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CHAPTER 10. CASE STUDY 3.  
BIRMINGHAM PARKING 
OCCUPANCY  
      Unsupervised Machine Learning with summary() and 
tsfeatures()  



In several chapters of the book, we have been calculating summary features of time 
series. Summary features are convenient when we have a large number of time series and we are 
interested in determining whether there are hidden patterns or commonalities in how the series 
behave. For example, if we have time series for parking spaces at several locations in a large 
city, we might be interested in determining whether some locations share the same temporal 
behavior.  

 
In past chapters, however, we have been using very simple features familiar to anyone 

that has had some exposure to introductory statistics or features that were studied in the 
corresponding chapters where the example was presented: mean, standard deviation, number of 
observations at certain distance from the mean, autocorrelations up to a fixed lag k. Certainly 
there are many more features that we could considered as good summaries of a time series.  

  
The tsfeatures package allows us to generate more features of our time series beyond just 

summary statistics like those seen in other chapters.  We will get some practice using this 
package by generating some features that could be appropriate for the Smart Cities Parking 
data seen in Chapter 4, Case Study of Section 4.7 (from now on “the data.”). We include that 
data again in the space where this file is for your convenience. The R program used for doing the 
analysis in this case study is Ch10-Birmingham-auto-features.R. Read the information about 
the data that we presented there. We will then perform some unsupervised machine learning  by 
doing a clustering analysis with the features that we selected.  
 

I. The tsfeatures package  
In order to use the tsfeatures (https://cran.r-

project.org/web/packages/tsfeatures/vignettes/tsfeatures.html#tsfeatures) package, one needs to 
install it in R by running,  

install.packages("tsfeatures") 
and then including it in their code along with their other packages with 

library(tsfeatures) 
The tsfeatures package has a whole number of functions to generate different types of 

features of the time series it is given. The input can vary depending on the function being used. 
For example, functions sometimes return a list of output, like acf_features(), or just a 
single value like hurst(). To ensure you get an output you expect, and give the correct inputs 
to each function, it will be useful to refer the documentation provided, as they provide a list of 
functions as well as examples.  

With this in mind, we will now explore this data and use this package to see and include 
features that could be useful for this data. 
 

I.1 Feature Selection using the tsfeatures package 
 Feature selection can be difficult to achieve as it requires a good understanding of 

the features themselves, knowledge of your data, and domain knowledge to have a good idea of 
what features might be useful in differentiating data. To get started it is always good to plot your 
data to get an idea of what it looks like and then one can see if any features can be used to 
highlight certain differences that we visually see. 

https://cran.r-project.org/web/packages/tsfeatures/vignettes/tsfeatures.html
https://cran.r-project.org/web/packages/tsfeatures/vignettes/tsfeatures.html#tsfeatures
https://cran.r-project.org/web/packages/tsfeatures/vignettes/tsfeatures.html#tsfeatures


Step 1. Know your data.  
Within the code provided we generated Figure 1 by selecting 6 parking structures at 

random out of the 28 we have in our data after removing "BHMBRTARC01".  
 
 

 
Figure 1. Multiple time plots image of occupancy to view weekly and daily seasonality.  

 

 

Figure 1 helps us see the weekly variation and the daily variation of the different types of 
parking lots within this data; we also notice that some have a much larger occupancy than others. 
We can also see some strange zeros in the data when there are sudden drops in occupancy. 
Certain time series also have significantly lower occupancy than others, even when they are 
expected to be high.  

 
 The reader could modify the R code for this plot in the R file, to get the percentage  

 
Step 2. Study the features available in the tsfeatures package, and decide which ones to 
use.  
 

To familiarize yourself with the features that could possibly be extracted from the time 
series using the tsfeatures package, it would be useful to look at  https://cran.r-
project.org/web/packages/tsfeatures/vignettes/tsfeatures.html  

https://cran.r-project.org/web/packages/tsfeatures/vignettes/tsfeatures.html
https://cran.r-project.org/web/packages/tsfeatures/vignettes/tsfeatures.html


In this case study, we try a few features, but the reader is encouraged to think, after 
reading all the possible features to include, and their description, which ones the reader would 
prefer. We will describe next the ones that we chose for illustration purposes.  

 
acf_features and  hurst under the function acf1 in the R program. The former 

gives the first autocorrelation coefficient or the short term memory of the data, the 
autocorrelation coefficient of the difference and the second difference, while hurst shows the 
long-range dependence or self-similarity within time series, thus both can group time series with 
similar short term memory and self-dependency.  

 
The data also has a lot of randomness, and features like entropy and 

stl_features(spike)could help capture the general random differences as entropy 
measures the uncertainty or randomness, while spike measures the presence and magnitude of 
sudden, short-duration peaks or irregular events, which both can be used to group those with 
similar randomness.  

 
The variability in the capacity of the time series, those high or low points, could be 

captured by crossing_points and flat_spots. The former  shows the number of times a 
time series crosses the median line, and the latter measures the maximum run length, which may 
help to capture time series with sequences of high or much lower occupancy.  

 
stl_features() contains many other features that were included in our R program. 

Please, see the documentation for the package and the R program, to see what we chose. With 
more precise domain knowledge and understanding of one's data these features can be used to 
discover similarities among different time series.  

 
The features mentioned are just an example of possible features to consider. Explore 

more.  
 

II. Unsupervised Machine Learning- Clustering 
 

Unsupervised machine learning, unlike supervised machine learning, is not given any 
knowledge of the actual groups/labels of the data, and instead finds the natural grouping and 
structure within the data. One example of unsupervised machine learning is cluster analysis, 
which we will use to cluster the parkings’ time series based on the features generated. We will be 
using kmeans() from the base R package to perform cluster analysis.  
 

Kmeans cluster analysis 
 

There are two arguments given to kmeans(), the number of clusters, ‘k’, and the 
columns of the features data set that we woult like to use to base the clusters off of. We will only 
give kmeans() the columns generated from tsfeatures, but in order to determine the optimal 



number of clusters we will make an elbow plot of how the Mean Square Error (MSE) changes 
for each k value, and choose the optimal number of cluster values by where the elbow is on the 
plot. We do this by performing kmeans a few times, with small k to a large k=10. When we plot 
the MSE for each k value we get Figure 2.  
 

Figure 2. The elbow plot allows us to see how the MSE changes as the number of 
clusters considered in kmeans() changes.  

 
 
From Figure 2,  it seems like 3-5 clusters seem appropriate to cluster the set of time series 

using only the features created with the tsfeatures package. We will proceed with using a k=3. 
 
With our chosen k, we can now apply k means again to our data using k=3, and save 

those clusters. We now can plot our data and color by the clusters to see if there is any natural 
grouping to the data. In order to plot the data in way that we can visualize the clusters, however,  
we need a horizontal and a vertical axis, thus we need to choose two features for the axis. We 
want to use the features (the dimensions) of the features data set that best help separate the 
clusters. That is, when  choosing these features, we want those that have the most variability 
between the cluster groups. A pairs plot like that in Figure 3 helps us select the variables that 
best separate the clusters.  



 
Figure 3. Pairs plot to visualize clusters in different dimensions. This plot lets us see the distribu�on of 
all variables per cluster (right column box plots), the propor�on of parking lots in each cluster, the 
scater plot of the separated clusters (colored scater plots) and the distribu�on of a given variable by 
cluster.  

Based on Figure 3, the only variable that has very clear separation between groups is the 
feature crossing_points, which we will make our x axis. For our y axis, there are not many other 
features with great separation between groups, thus we will choose flat spots because at least 
there is 2 distinct nodes. With our axis chosen, we can plot the data and color the clusters as 
indicated in Figure 4.  
 



Figure 4. After selecting the two dimensions that make the time series most dissimilar, 
we plot the data and the cluster allocation based on those dimensions.  

 
 
Figure 4 indicates that there seems to be decent clusters formed, however that is mainly 

due to crossing points splitting the data well. With better domain knowledge and with other 
features from the tsfeatures package or the summary features extracted without the package, 
perhaps  there could be better features to include that might be able to better separate the 
clusters.  The reader is encouraged to use the R program to try other features.  
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