
Chapter 2 Solutions

Notice to readers. Unless the R program is written within these solutions, the reader will find all R programs cited in
the book and all time series data cited in the book in the code tab at https://timeseriestime.org

2.3.2 Exercises

Exercise 2.1
The 3-point moving average smoother for time series yt would have first term 1

3 (yt + yt+1 + yt+2) . The second terms
would be 1

3 (yt+1 + yt+2 + yt+3) .

If we use a 3-point moving average, because 3 is an odd number we would not need to center the moving average.
As indicated on Page 68, if we average an even number of data points we need to center. But if the number of average
terms is odd, we do not center. Thus, the operation that we do next would not be usually done in practice. For the sake
of this mathematical exercise, let’s assume we do it just to see the mathematical solution.

Upon taking the 2-point moving average of those two terms we obtain:

1
2

[
1
3 (yt + yt+1 + yt+2) + 1

3 (yt+1 + yt+2 + yt+3)
]
= 1

6 (yt + 2yt+1 + 2yt+2 + yt+3) .

This is equivalent to the smoothing operation (1/6)[1, 2, 2, 1].

Two practical reasons why we would smooth a seasonal time series with a moving average smoother are: (i) to
visualize the trend component without the clutter of the seasonal and the random term. (ii) To be able to detrend the
time series, i.e., remove the trend for further analysis.

□

Exercise 2.2
The solution to this problem requires program ch2janacek-smoothers.R but there are three steps before you apply it:

(i) Obtain data ch1passengers.csv from Chapter 1’s program and data files. Replace the data statement in
ch2janacek-smoothers.R with

data=read.csv("ch1passengers.csv", header=T)

head(data)

##

dim(data)

1

https://timeseriestime.org

Sanchez, J. Time Series for Data Scientists. CUP 2023.
Chapter 2 Solutions to Exercises, Problems and Quiz

(ii) Apply the program used in Chapter 1 to remove the commas from the data. Use the relevant statements in
ch1passengersplot.R

(iii) Extract from the data frame the variable of interest, domestic for January 2012 to 2017 using the statements
in ch1passengersplots.R

Once you do all that, the data is ready to be analyzed with ch2janacek-smoothers.R and the Base R function
decompose(). Notice that there will have to be some changes in the last program, namely the k=12 for the passengers
data, and the plot of the data needs to be told that we lose 6 points of data at the beginning and 6 data points at the end
when we do the the centered twelve-point moving average.

Since 12 is an even number, the moving average obtained is centered.

Program Exercise 2-2.R illustrates how we put together that code.

By running the program, you will find that decompose() and Janacek’s function give exactly the same moving
average trend estimate.

□

Exercise 2.3
The 12-point MA values that start between June and July of 2005 are: 17.5175,19.05917, 20.6175, 22.02083, 23.48083,
24.98417, 26.48333,27.88083,29.4125 The 2-point MA of the 12-point MA, starting in July 2005 is: 18.28834,
19.83833, 21.31917, 22.75083, 24.2325, 25.73375, 27.18208, 28.64667

The moving average for the first filter is (1/12)(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) and the second filter is (1/2)(1, 1).
The filter for the two operations combined is (1/24)(1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1).

□

Exercise 2.4

(a) jj=JohnsonJohnson
jj

class(jj)

jj=ts(jj,start=1960, frequency=4)

plot(jj, ylab="Earnings per Share", main="J & J")

start(jj); end(jj);frequency(jj)

summary(jj)

length(jj)

(b) Add the following line to the code to obtain the plot.

plot.ts(jj, ylab="Earnings (dollars)",

main="Quarterly earnings (dollars) \n per Johnson & Johnson share 1960{80")

(c) You will see the first observations of the time series by typing in R:

jj=JohnsonJohnson

jj

2

Sanchez, J. Time Series for Data Scientists. CUP 2023.
Chapter 2 Solutions to Exercises, Problems and Quiz

We could do the calculations requested by hand (using calculator or R) or we could use a program. First, by hand,
we could take first a 4-point moving average.

(0.71+0.63+0.85+0.44)/4 = 0.6575

(0.63+0.85+0.44+0.61)/4 = 0.6325

(0.85+0.44+0.61+0.69)/4 = 0.6475

(0.44+0.61+0.69+0.92)/4 = 0.665

(0.61+0.69+0.92+0.55)/4 = 0.6925

(0.69+0.92+0.55+0.72)/4 = 0.72

(0.92+0.55+0.72+0.77)/4= 0.74

(0.55+0.72+0.77+0.92)/4 = 0.74

(0.72+0.77+ 0.92+0.6)/4 = 0.7525

Then, we can take a 2 point moving average of the 4 point moving average

(0.6575+0.6325)/2= 0.645

(0.6325+0.6475)/2 = 0.64

(0.6475+0.665)/2 = 0.65625

(0.665+0.6925)/2 = 0.67875

(0.6925+0.72)/2 = 0.70625

(0.72+0.74)/2 = 0.73

(0.74+0.74)/2 = 0.74

(0.74+0.7525)/2 = 0.74625

Alternatively, you can compile the following functions[85], which shows the programming that goes behind
smoothing a time series with a moving average. If you like programming, this will be a fun program to run.

odd<-function(k)

utility function

if k is odd it returns True

if k is even it returns False

if k is zero it returns False

{if ((-1)ˆk<0) (m<-T) else (m<-F)

m}

swindow<-

function (x, k,pt=T)

{

#moving average windowed smoother

#give it k and it will smooth with equally weighted window length k

scaled to sum to 1

#plots if pt=T

3

Sanchez, J. Time Series for Data Scientists. CUP 2023.
Chapter 2 Solutions to Exercises, Problems and Quiz

output is smoothed seies

if (odd(k)) {

w <- seq(k) * 0 + 1

}

else {

k <- k + 1

w <- seq(k) * 0 + 2

w[1] <- 1

w[k] <- 1

}

w <- w/sum(w)

n <- length(x)

kf <- floor(k/2)

m <- (n - k + 1)

smooth <- seq(1, m)

for (i in 1:m) {

smooth[i] <- w %*% x[i:(k + i - 1)]

}

sm<- c(x[1:kf], smooth, x[(n - kf + 1):n])

if(pt)

{time<-seq(n)

plot(time,x,type="b")

points(time,sm,pch="+")}

sm}

swindow2<-

function (x, k,pt=T)

{

if (odd(k)) {

#moving average windowed smoother

#give it w and it will smooth x with this window

i like w to be scaled to sum to 1

two plots one of original one of smoothed non overlapping

w <- seq(k) * 0 + 1

}

else {

k <- k + 1

w <- seq(k) * 0 + 2

w[1] <- 1

w[k] <- 1

}

w <- w/sum(w)

n <- length(x)

kf <- floor(k/2)

m <- (n - k + 1)

smooth <- seq(1, m)

for (i in 1:m) {

smooth[i] <- w %*% x[i:(k + i - 1)]

4

Sanchez, J. Time Series for Data Scientists. CUP 2023.
Chapter 2 Solutions to Exercises, Problems and Quiz

}

sm<- c(x[1:kf], smooth, x[(n - kf + 1):n])

if(pt)

{time<-seq(n)

par(mfrow=c(2,1))

plot(time,x,type="b")

plot(time,sm,type="b")}

par(mfrow=c(1,1))

sm}

and then run

swindow(jj,4,pt=T)

or run

smoothed=swindow(jj,4,pt=T)

head(smoothed, 15)

Notice that the swindow function returns the first two values of the original series and then the third value is the
already smoothed one. From then on, they are all smoothed until the last two before the last, which again are taken
from the original series.

So the requested numbers nicely formatted and summarized can be seen in the following table.

If you add to the R code for this problem the following command,

decompose(jj)$trend

you will notice that the first numbers in the resulting trend component are identical to those in the last column
of Table ??, obtained with must less programming but be aware that behind that simple line of code there is the
larger program above it.

□

2.3.8 Exercises

Exercise 2.5
Notice that nottem is average monthly temperatures at Nottingham, 1920-1939, a total of 20 years of monthly obser-
vations. You can find what the time series is by typing in R

5

Sanchez, J. Time Series for Data Scientists. CUP 2023.
Chapter 2 Solutions to Exercises, Problems and Quiz

Table for Exercise 2.4(c). Centered 4-point moving average of the first 12 observations of JohnsonJohnson in Exercise
2.4

t yt 4-point MA 2-point of 4-point MA
1960:1 0.71
1960:2 0.63

0.6575
1960:3 0.85 0.645

0.6325
1960:4 0.44 0.64

0.6475
1961:1 0.61 0.65625

0.665
1961:2 0.69 0.67875

0.6925
1961:3 0.92 0.70625

0.72
1961:4 0.55 0.73

0.74
1962:1 0.72 0.74

0.74
1962:2 0.77 0.74625

0.7525
1962:3 0.92
1962:4 0.6

?nottem

Thus it is a monthly time series. We could aggregate the time series to make it quarterly and apply the method
of Section 2.3 (a four-term centered moving average), since the number of quarters to average is even. Section 2.2 has
the R code to do the decomposition. You may use the following code to do the decomposition after aggregating. The
aggregation will result in a ts object with 80 quarters (hence the need to do centered moving average).

nottem.quarterly= aggregate(nottem,nfrequency=4,FUN=mean)

length(nottem.quarterly)

class(nottem.quarterly)

#The seasonal effect of all quarters 4 is the same, so we could just look at

decompose(nottem.quarterly)$seasonal[4] #gives quarter 4’s seasonal effect.

or we could look at

decompose(nottem.quarterly)$seasonal[40] #gives quarter 4 of 1929

To see if the assumption of additive decomposition is appropriate do

plot(decompose(nottem.quarterly))

The seasonal effect for quarter 4 of 1929 and all quarters 4 is equal to −5.105263.

6

Sanchez, J. Time Series for Data Scientists. CUP 2023.
Chapter 2 Solutions to Exercises, Problems and Quiz

By looking at the plot of the decomposition, we can see that the random term fluctuates randomly around a
constant mean of 0 with no discernible pattern. Hence it looks like the additive decomposition assumption is a good
one.

Extra

It is a good exercise to apply a 12-month moving average even though it is not asked and we did not do it
in the Chapter’s Sections. The generalization of the method of Section 2.3 to monthly data using decompose is
straightforward.

Keeping it monthly, the seasonal effect is for each month, not quarter. Let’s assume we want month 4, April’s
seasonal effect. Since the seasonal effect of April is the same for all April months, we just look at the first April in
1920.

For the first part of the question, since nottem is of class ts(), and R therefore already knows that it is a monthly
time series, we simply type in R,

decompose(nottem)$seasonal[4] #gives, April’s seasonal effect estimate

We will find out that this seasonal effect estimate is ŝApril = −2.7573465

Notice that the seasonal swings are not constant on April throughout the years but the seasonal effect is constant
in every April because it is the average of all April seasonal swings, an estimate.

The plot of the decomposition,

plot(decompose(nottem)) #without other arguments in the function,

this does additive decomp

shows that the random term is randomly fluctuating around a constant value, and has no obvious changing vari-
ance. Thus it appears that additive decomposition is good enough for the time series?nottem

Exercise 2.6
The following code will show that indeed the sum of the trend, seasonal and random component at time t = 5 and time
t = 9obtained with the decompose function equals the value of the time series at time t = 5 and t = 9, respectively.

data=c(3.3602, -3.1769, 0.3484, 7.469, 4.4963, -0.4621,

0.7218, 6.9484, 5.2374, 2.9242, 4.7006,

11.2793, 5.1637, 1.5441, 12.121, 9.6588, 8.0922,

3.9653, 11.4177, 13.2088)

y=ts(data, start=c(1960,2), end=c(1965,1),frequency=4)

Notice that R’s decompose() uses by default additive decomposition.

Thus if you do not specify type, it will do additive.

trend=decompose(y)$trend #extract trend

seasonal=decompose(y)$seasonal #extract seasonal

random=decompose(y)$random #extract random

7

Sanchez, J. Time Series for Data Scientists. CUP 2023.
Chapter 2 Solutions to Exercises, Problems and Quiz

trend[5]+seasonal[5]+random[5] # one instance of addition of components, 1961:2

data[5] #compare with value of the data

trend[9]+seasonal[9]+random[9] # another instance of addition of components 1962:2

data[9] #compare with value of the data at 1962:2

□

Exercise 2.7
(a) (b) Run program ch2mediansmootherexercise.R to see the plot and to obtain the values needed for part (c). The
calculated 4-point medians obtained from the data using the program are:

3.3602, 0.3484, 0.7218, 4.4963, 4.4963, 2.9242, 4.7006, 5.2374,

5.1637, 4.7006, 5.1637, 9.6588, 8.0922, 8.0922, 9.6588, 9.6588.

(c)

The data values are: 3.3602, -3.1769, 0.3484, 7.469, 4.4963, -0.4621, 0.7218, 6.9484, 5.2374, 2.9242, 4.7006,
11.2793, 5.1637, 1.5441, 12.121, 9.6588, 8.0922, 3.9653, 11.4177, 13.2088

The first running median is calculated by the program as follows, using the first five observations.

(i) Sorting 3.3602,−3.1769, 0.3484, 7.469, 4.4963 from lowest to highest, we obtain the sorted first five numbers
as:

−3.1769, 0.3484, 3.3602, 4.4963, 7.4690

(ii) Median(−3.1769, 0.3484, 3.3602, 4.4963, 7.4690)= 3.3602

To obtain the second running median, the program does the following:

(i) Sort−3.1769, 0.3484, 7.469, 4.4963,−0.4621 from lowest to highest to obtain−3.1769−0.46210.34844.49637.4690

(ii) Median(−3.1769 − 0.46210.34844.49637.4690)=0.3484

And so on and so forth.

(d) The median smoother is not as smooth as the moving average smoother. Compare with Figure 2.4 in the
chapter.

□

Exercise 2.8
The reader should notice that the third column should say T̂ instead of ma4. That column is the result of executing the
4-term centered moving average, as described in Section 2.3 and 2.3.3.

To obtain the seasonally adjusted time series, deduct the Ŝ t column from the xt columns. The first results are

1985 Q4: 472 − 25.5185 = 446.4815

1986 Q1: 821 − 512.58125 = 308.4185

Complete the results up to 1990 Q2.

8

Sanchez, J. Time Series for Data Scientists. CUP 2023.
Chapter 2 Solutions to Exercises, Problems and Quiz

As an extra exercise, the reader could double check that the Ŝ t was calculated as indicated in Section 2.3.3.

□

Exercise 2.9
(a) Program chapter2ma4trend.R is a simple way of doing the job requested in this question. The program can

be used to alert students that the random term obtained with the function decompose() is the detendred and
seasonally adjusted data. Although the plot of the decompose() output already indicates the difference between
the raw original time series and the random term by showing them in two different plots, it helps to see both plotted
on the same plot. Students can then be made aware that a special kind of plot, a plot with two vertical axes, is
needed to be able to see two time series that have very different scale in the same image. Sometimes, students plot
time series of very different scales on the same image and then complain that they can not see one of the images.
This two-axes plot helps remind them not to do that.

This question, because of the short time series involved, can also be used to show the programming involved in
decomposing and obtaining the components. Chapter 2, Section 2.3, explains that in detail, mathematically, but
it is interesting for students that are particularly interested in programming, to see the programming involved.
To do this, the basic programs of Janacek [85] are very didactic. The programs are not included in program
chapter2ma4trend.R but they can be copy-pasted from this manual. They can also be accessed from timeseri-
estime.org, history page.

Actually, using Janacek’s program helps assess whether students have understood the additive decomposition of
Section 2.3. First, it helps remind them that there are missing values in the MA sequence, since we lose data when
smoothing. Second, when the program gives the estimated seasonal effect, which are slightly different from those
in Table 2.3 due to rounding, the way Janacek’s program produces them as

seasonaleffect

1 2 3 4

-26.790 -464.265 -27.515 510.585

Students can be prompted to indicate which quarter each of those seasonal effects is for. If they look at Table 2.3,
they will see that Janacek’s program is producing, labeled as ”1” the seasonal effect for quarter 2; labeled as ”2”
the seasonal effect for quarter 3; labeled as ”3” the seasonal effect for quarter 4; labeled as ”4” the seasonal effect
for quarter 1.

The following is the program that uses Janacek’s functions plus the code to produce the plots.

Highlight and compile (run) the functions from Janacek’s

Janacek https://archive.uea.ac.uk/˜gj/book/smooth.code

tsplot<-function(x){ # Janacek’s. Highlight all and run to compile

time series plotter - plots time against x

this is the basic time domain plotter

time<-seq(1,length(x))

plot(time,x,type="b")

}

#Table 2.3, x

data=c(322, 144, 472, 821, 408, 247, 626, 925, 434, 259, 681, 1277,

829, 435, 940, 1639, 1222, 592, 1055, 2000, 1278, 768, 1415, 2417)

9

Sanchez, J. Time Series for Data Scientists. CUP 2023.
Chapter 2 Solutions to Exercises, Problems and Quiz

tsplot(data) # apply Janacek’s function

odd<-function(k) # Janacek’. Highlight all and run to compile

utility function

if k is odd it returns True

if k is even it returns False

if k is zero it returns False

{if ((-1)ˆk<0) (m<-T) else (m<-F)

m}

highlight the whole function and compile this ma(k) smoother

swindow3 <-

function (x, k, pt = T)

{

#keep seasonal

ks <- k

#moving average windowed smoother

#give it k and it will smooth with equally weighted window length k

scaled to sum to 1

#plots if pt=T

output is smoothed series but also gives seasonal estimates

if (odd(k)) {

w <- seq(k) * 0 + 1

}

else {

k <- k + 1

w <- seq(k) * 0 + 2

w[1] <- 1

w[k] <- 1

}

w <- w/sum(w)

n <- length(x)

kf <- floor(k/2)

m <- (n - k+1)

smooth <- seq(1, m)

time <- seq((kf + 1), (n - kf))

for (i in 1:m) {

smooth[i] <- w %*% x[i:(k + i - 1)]

}

sm <- c(x[1:kf], smooth, x[(n - kf + 1):n])

time <- seq(n)

if (pt) {

plot(time, x, type = "b")

10

Sanchez, J. Time Series for Data Scientists. CUP 2023.
Chapter 2 Solutions to Exercises, Problems and Quiz

points(time[(kf + 1):(n - kf)], smooth, pch = "+")

lines(time[(kf + 1):(n - kf)], smooth)

}

tt <- time[(kf + 1):(n - kf)]

ti <- factor((tt - 1)%%ks + 1)

ss <- tapply((x[(kf + 1):(n - kf)] - smooth), ti, mean)

ss <- ss - sum(ss)/k

list(ma = smooth, seas = ss)

}

to obtain seasonals= swindow3(x,k, pt=T)$seas

We now add this code to extract the moving average and the

estimated seasonal effects

trendplusts=swindow3(data, 4, pt=T) # We see the smoother first

extract the moving average

trend = swindow3(data, 4, pt=T)$ma

trend

length(trend)

extract the estimated seasonal effect

seasonaleffect=swindow3(data, 4, pt=T)$seas

seasonaleffect

add seasonal effect and moving average

length(data)

create sequence of seasonal effects

Shat=rep(seasonaleffect, 24/4)

Shat

add seasonal effects to moving average

length(trend)

trendvar=rep(NA,24)

trendvar[3:22]=trend

trendvar

TrendPlusShat=Shat + trendvar

TrendPlusShat

View raw data and fitted Trend plus Seasonal effect in one plot

plot(time, data, type = "b")

points(time, TrendPlusShat, pch = "+",type="l", col="red")

Obtain the seasonally adjusted and detrended time series and plot it

SeasAndDet=data- TrendPlusShat

SeasAndDet

create data frame that will be used when doing the two Y-axes plot

11

Sanchez, J. Time Series for Data Scientists. CUP 2023.
Chapter 2 Solutions to Exercises, Problems and Quiz

newdataframe=data.frame(time, data, trendvar, Shat, TrendPlusShat,SeasAndDet)

newdataframe

install.packages("latticeExtra")

library(latticeExtra)

create data frame

time<-seq(1,length(x))

newdataframe=data.frame(time, data, SeasAndDet[3:22]=SeasAndDet)

We use code from

https://r-graph-gallery.com/145-two-different-y-axis-on-the-same-plot.html

obj1 <- xyplot(data ˜ time, newdataframe,

type = "l" , lwd=2, col="steelblue")

obj2 <- xyplot(SeasAndDet ˜ time, newdataframe,

type = "l", lwd=2)

--> Make the plot with second y axis:

doubleYScale(obj1, obj2,

text = c("rawdata", "detrendedandseasadjusted"),

add.ylab2 = TRUE)

(b) As we notice in the doubleYscale() plot, clearly the detrended and seasonally adjusted time series fluctuates
randomly around zero with not particular pattern and no regular seasonality.

Seasonally adjusting and detrending the data has removed all indications of trend or regular seasonality. This,
again, does not mean that the seasonally adjusted and detrended data (the random term of the decomposition or
data-trendestimate-seasonaleffect) is devoid of signal. In fact, if we do the ACF of such data, we will see that
there is significant autocorrelation at lag 2. But ACF has not yet been explained in Chapter 2. After Chapter 3 is
done, the instructor can revisit this example to reinforce these concepts (easily forgotten by students) by adding
the following code to the decompose() version of the exercise.

data=c(322, 144, 472, 821, 408, 247, 626, 925, 434, 259, 681, 1277,

829, 435, 940, 1639, 1222, 592, 1055, 2000, 1278, 768, 1415, 2417)

Using decompose() function

First, make data a ts()

data.ts = ts(data, start=c(1985, 2), freq=4)

par(mfrow=c(2,1))

acf(data.ts)

acf(decompose(data.ts)$random, na.action=na.omit)

acf(data.ts)

12

Sanchez, J. Time Series for Data Scientists. CUP 2023.
Chapter 2 Solutions to Exercises, Problems and Quiz

□

2.4.1 Exercises

Exercise 2.10
Using the program ch2sodasales.R all you have to do is add the following lines at the end of the program to see the
answer.

must run program ch2sodasales.R before running the following lines

random=decompose(soda,type="mult")$random

product=trend*seasonal*random #trend and seasonal obtained earlier in the program

cbind(soda, product) # You will see that the product equals the time series.

You will notice that, except for the NA caused by losing data when we smooth with the MA filter, the product
of the random component, the seasonal effect component and the trend component equals the true values of the soda
time series.

□

Exercise 2.11
Using the program ch2sodasales.R all you have to do is add the following lines at the end of the program to see the
answer, which will be 0.9855382.

Alternatively, you could also just look at the output of decompose(soda) in the program, since the output is not
large. The additional lines given below will be helpful when the data set is large.

must run program ch2sodasales.R before running the following lines

install.packages("TSstudio")

library(TSstudio)

We use TSstudio to convert the ts data to a data frame that lubridate package

can help us with later.

df=ts_to_prophet(soda) # a data frame, where the date is now labeled ds

df # view the data set now in a data frame format

class(df)

include the seasonal effect from decompose as variable in the new data frame

df$seasonal=seasonal

df

install.packages("lubridate) # uncomment if not installed yet.

library(lubridate)

13

Sanchez, J. Time Series for Data Scientists. CUP 2023.
Chapter 2 Solutions to Exercises, Problems and Quiz

because we put the data in data frame format, lubridate can help extract month, year

df$year=year(df$ds)

df$month=month(df$ds) # 1 is January, 2 is february

df

so now you may select June 1991 to obtain the answer.

df$seasonal[df$year==1991 & df$month==6]

since small data set, check all June months by viewing the whole data set

df

□

Exercise 2.12
Running the following short Base R program, you can obtain the components of the multiplicative decomposition and
the data.

#AirPassengers is a ts object

install.packages("TSstudio")

library(TSstudio)

We use TSstudio to convert the ts data to a data frame that lubridate package

can help us with later.

df=ts_to_prophet(AirPassengers) # a data frame, where the date is now labeled ds

df # view the data set now in a data frame format

class(df)

include the trend, seasonal effect and random effect

from multiplicative decompose as variable in the new data frame

df$trend=decompose(AirPassengers, type="mult")$trend

df$seasonal=decompose(AirPassengers, type="mult")$seasonal

df$random=decompose(AirPassengers, type="mult")$random

df

install.packages("lubridate) # uncomment if not installed yet.

library(lubridate)

because we put the data in data frame format, lubridate can help extract month, year

df$year=year(df$ds)

df$month=month(df$ds) # 1 is January, 2 is february

df

you now have the decompose components, the data and the date in the same format as in

14

Sanchez, J. Time Series for Data Scientists. CUP 2023.
Chapter 2 Solutions to Exercises, Problems and Quiz

the tables seen in the Chapter for the manual calculations.

Now we will do the manual calculations for the moving average trend, the seasonal effect and the random term
of July 1949 and compare with the output of the program. The reader can then do the next values.

ds y trend seasonal random year month

...

..

6 1949-06-01 135 NA 1.1127758 NA 1949 6

7 1949-07-01 148 126.7917 1.2265555 0.9516643 1949 7

8 1949-08-01 148 127.2500 1.2199110 0.9534014 1949 8

9 1949-09-01 136 127.9583 1.0604919 1.0022198 1949 9

10 1949-10-01 119 128.5833 0.9217572 1.0040278 1949 10

11 1949-11-01 104 129.0000 0.8011781 1.0062701 1949 11

To obtain the first trend value in the output (which is a centered moving average), we do the following:

Step 1: 1
12 (112 + 118 + 132 + 129 + 121 + 135 + 148 + 148 + 136 + 119 + 104 + 118) = 126.6667

1
12 (118 + 132 + 129 + 121 + 135 + 148 + 148 + 136 + 119 + 104 + 118 + 115) = 126.9167

Step 2: Take the average of those two.

(126.6667 + 126.9167)/2 = 126.7917

So that matches 126.7917 in the output for 1949-07-01.

Since it is clear from this and subsequent calculations that the T̂ component is the same as that given by trend
in R’s decompose, we can use R as a calculator now to do what we need to do to obtain the seasonal effect manually.
Add to the program given earlier in this program the following:

install.packages(dplyr) #uncomment if package not installed

library(dplyr)

df$swing=df$y/df$trend

df

df$ratio=tapply(df$swing,df$month,mean,na.rm=TRUE)

df

the seasonal effect S-hat is the adjusted value of ratio.

since the data starts in January, and we have value of ratio

for that year, we can calculate the adjustment as

adjust=12/sum(df$ratio[1:12])

with this we can create column with Shat, the seasonal effect.

df$Shat= df$ratio*adjust

df

So the random component is obtained as follows:

df$random.manual= df$y/(df$Shat*df$trend)

df

and you will notice that the values in column Shat are the same as the value in column seasonal (from R’s decom-
pose) and the values in column random.manual are the same as the values in column random (from R’s decompose)

15

Sanchez, J. Time Series for Data Scientists. CUP 2023.
Chapter 2 Solutions to Exercises, Problems and Quiz

□

Exercise 2.13
The following Base R program will allow you to find the answer.

Preparing the data

rooms=scan("rooms.txt")

head(rooms); str(rooms) # check data

rooms=ts(rooms, start=c(1977,1), frequency=12)

part (a)

plot(decompose(rooms, type="mult"))

title("Multiplicative decomposition of the raw rooms data")

plot(decompose(log(rooms)))

title("additive decomposition of the log of rooms data")

part (b)

par(mfrow=c(2,1))

boxplot(rooms˜cycle(rooms),

main="Seasonal boxplots of raw rooms ts",

xlab="Month (1=January,, 12=December)")

boxplot(log(rooms)˜cycle(rooms),

main="Seasonal boxplots of logged rooms",

xlab="Month (1=January,, 12=December)")

dev.off()

(a) In both cases, the random term is fluctuating around a constant value with no trend in mean or variance, leading
to the conclusion that both approaches (additive decomposition of the logged rooms and multiplicative decomposition
of the raw rooms result in similar outcome for the random term. This also leads to tentatively conclude that the
seasonal swing in the raw rooms data is proportional to the trend. This makes sense since, as indicated in the chapter,
time series concerning human populations tend to increase in variability proportionally to trend due to the increase in
the size of the population.

(b) The conclusion reached from both seasonal boxplots is the same. The big seasonal increase occurs in August
in both plots, since the median in August is higher than any other median in the plot. Then there is another minor
seasonal increase in December and January. This makes sense. Those are the seasons in the Northern hemisphere
when most people travel and occupy hotels.

□

16

Sanchez, J. Time Series for Data Scientists. CUP 2023.
Chapter 2 Solutions to Exercises, Problems and Quiz

2.5.1 Exercises

Exercise 2.14
The seasonal effects for acceleration obtained in Table 2.2 were found by first finding a moving average trend, then
subtracting that trend from the data to obtain the seasonal swings, and then averaging the seasonal swings of each
month and adjusting to obtain the following seasonal effects for the following quarters:

Ŝ Q1 : 3.89895; Ŝ Q2 : 0.238375; Ŝ Q3 = −4.041425; Ŝ Q4 = −0.0959

On the other hand, the seasonal coefficients obtained with the regression program in the fist part of Program
ch2regsmoothers.R, the coefficients corresponding to Q2, Q3, Q4 are not the seasonal effects. Those coefficients
represent by how much (or less) the seasonal of q2, for example (for coefficient with q2), is above (or below) the
seasonal of q1. Interpreting the coefficients of q3 and q4 similarly, we can then see that those regression coefficients
measure something different from Ŝ in Table 2.2. In order to obtain the seasonal effects, we would have to add to the
coefficient of each quarter the value of the intercept corresponding to the seasonal of q1. Since the regression model
has also the time trend as independent variable, that seasonal is not obvious as the constant does not represent in this
case just the seasonal of q1.

□

Exercise 2.15
With the first regression approach presented in Program ch2regsmoothers.R, where dummies were defined for the
seasonality, the forecasts are:

1965Q2 forecast: 12.17343 1965Q3 forecast: 7.81635 1965Q4 forecast: 11.78298 1966Q1 forecast: 13.71518

With the approach recommended in this problem, adding to the estimated regression trend the seasonal effects of
Table 2.2, the forecasts are:

1965Q2 forecast: 11.092015 1965Q3 forecast: 7.326765 1965Q4 forecast: 11.786840 1966Q1 forecast: 16.296240

There isn’t much difference between the forecasts obtained with these methods but they are not identical.

The following R program was used to obtain the last forecasts, after reading the data with Program ch2regsmoothers.R.

regmodel = lm(y˜time)

summary(regmodel)

That=fitted(regmodel)

#We forecast the trend of four future unknown quarterly values

Yhat future

forecast.T.hat=c(rep(0,4))

for(j in 1:4){

forecast.T.hat[j] = 0.04809+0.51455*(20+j)

}

we can then add to forecast the seasonal effects from Table 2.2

forecast.yhat=0

forecast.yhat[1] = forecast.T.hat[1]+ 0.238375 # for 1965Q2 forecast

forecast.yhat[2] = forecast.T.hat[2]-4.041425 # for 1965Q3 forecast

17

Sanchez, J. Time Series for Data Scientists. CUP 2023.
Chapter 2 Solutions to Exercises, Problems and Quiz

forecast.yhat[3] = forecast.T.hat[3]-0.0959 #for 1965Q4 forecast

forecast.yhat[4]= forecast.T.hat[4]+3.89895 # for 1966Q1 forecast

rbind(forecast.yhat[1], forecast.yhat[2], forecast.yhat[3], forecast.yhat[4])

□

Exercise 2.16
(a) The expected values are obtained by plugging 1, 2, 3, 4 in linear trend equation, for example, the prediction for

the first quarter of 2020 is T̂ = 500 + 50 ∗ 1 = 550. Doing the same for all four, we get.

550, 600, 650, 700

(b) We an obtain the predicted values by adding the seasonal effect to the forecasts based on just the trend. The
calculations are

550*0.4=220, 600*1.6=960, 650*1.2=650, 700*0.8=560

(c) T̂ = 500 + 50 ∗ 5 = 750

T̂ = 500 + 50 ∗ 6 = 800

T̂ = 500 + 50 ∗ 7 = 850

T̂ = 500 + 50 ∗ 8 = 900

Estimation of the trend plus seasonal can be obtained by multiplying by the seasonal:

ŷ = 750 ∗ 4

ŷ = 800 ∗ 1.6

ŷ = 850 ∗ 1.2

ŷ = 900 ∗ 0.8

2.6.2 Exercises

Exercise 2.17
The forecasting equation would be,

ŷt+1 = µ̂t+1(t) = µ̂t(t − 1) + 0.2(yt − µ̂t(t − 1))

Consequently, and given that µ̂23(22) = a = 321,

ŷ24 = µ̂24(23) = µ̂23(22) + 0.2(y23 − µ̂23(22)) = 321 + 0.2(362 − 321) = 329.2

ŷ25 = µ̂25(24) = µ̂24(23) + 0.2(y24 − µ̂24(23)) = 329.2 + 0.2(314 − 329.2) = 326.16

18

Sanchez, J. Time Series for Data Scientists. CUP 2023.
Chapter 2 Solutions to Exercises, Problems and Quiz

ŷ26 = µ̂26(25) = µ̂25(24) + 0.2(y25 − µ̂25(24)) = 326.16 + 0.2(365 − 326.16) = 333.928 □

Exercise 2.18
The reader will recognize that this problem is very similar to Exercise 2.17, but there is something given in that
exercise for that exercise that is not given here for this new exercise. Both exercises give the α̂, the estimate of α
obtained with simple exponential smoother. But we are not given the a22, that is, the prediction for t = 22 given data
up to t = 21. Therefore, we can not proceed with a forecast unless we assume an initial value to start with. Look
at Table 2.6 though. We had as initial predicted value there the first observation. So we can pretend that in our new
exercise, the first observation x22 = 343 is the initial value, that is, a22 = x22 = 343. Using this assumption,

x̂23 = µ̂23(22) = µ̂22(21) + 0.0344(x22 − µ̂22(21)) = 343 + 0.0344(343 − 343) = 343

That will be R’s a23.

With this, we can predict

x̂24 = µ̂24(23) = µ̂23(22) + 0.0344(x23 − µ̂23(22)) = 343 + 0.0344(362 − 343) = 343.6536

x̂25 = µ̂25(24) = µ̂24(23) + 0.0344(x24 − µ̂24(23)) = 343.6536 + 0.0344(245 − 343.6536) = 340.2599

The reader will notice that once you obtain the forecast of xfor t = 25, steps ahead forecast will not have data,
and in that case you will have to use the past forecast as the observation being forecasted. This is an indication that for
t = 26, t = 27 the forecasts will be the same as the forecast for t = 25. That is,

x̂26 = 340.2599 = x̂27

□

Exercise 2.19
See Example 2.4, and Program and data files used there.

(a) The following R program will do the job

###Simulating results with non-optimal alpha

you do that only to show how rmse

will be higher if

not using the optimal smoothing parameter.

Read the cod data

cod=read.table("cod.txt")

attach(cod)

cod=cod[,2] # select variable

cod.ts=ts(cod,start=c(1979,1),

end=c(1980,12),freq=12)

#Notice how we enter the value of alpha,

#something we would not do if looking for

the optimal alpha as in Example 2.4.

cod.hw2=HoltWinters(cod.ts,alpha=0.1,

beta=FALSE,gamma=FALSE) #change alpha each time

cod.hw2

19

Sanchez, J. Time Series for Data Scientists. CUP 2023.
Chapter 2 Solutions to Exercises, Problems and Quiz

cod.hw3=HoltWinters(cod.ts,alpha=0.3,

beta=FALSE,gamma=FALSE)

cod.hw3

cod.hw4=HoltWinters(cod.ts,alpha=0.5,

beta=FALSE,gamma=FALSE)

cod.hw4

cod.hw5=HoltWinters(cod.ts,alpha=0.7,

beta=FALSE,gamma=FALSE)

cod.hw5

cod.hw6=HoltWinters(cod.ts,alpha=0.7,

beta=FALSE,gamma=FALSE)

cod.hw6

To obtain the optimal alpha, run program ch2simpleexpsmooth.R

or read Example 2.4. Optimal alpha gives cod.hw1$SSE

Following is the command we use there. Notice that we do not

specify the alpha, letting R minimize the SSE to obtain it.

cod.hw1=HoltWinters(cod.ts, # For optimal, recall, you do not put alpha at all

beta=FALSE,gamma=FALSE)

cod.hw1 # gives output

Calculate RMSE for all the smoothers obtained and create table

SSE.all=c(cod.hw1$SSE,cod.hw2$SSE, cod.hw3$SSE,cod.hw4$SSE,cod.hw5$SSE,cod.hw6$SSE)

RMSE.all= sqrt(SSE.all/length(cod.ts))

alpha.all=c(cod.hw1$alpha,cod.hw2$alpha,cod.hw3$alpha,cod.hw4$alpha,cod.hw5$alpha,

cod.hw6$alpha)

table=data.frame(alpha.all, RMSE.all)

table

After running the program given in this exercise, the reader will see in the table object that the lowest RMSE is the
one obtained when we let R select the optimal alpha, the one from cod.hw1. The R software obtains the optimal
alpha, which gives RMSE=34.37415. The optimal α̂ is the one with the lowest RMSE.

(b) We add to the program given in part (a)

par(mfrow=c(3,2))

plot(cod.hw2, main="alpha=0.1")

plot(cod.hw3, main="alpha=0.3")

plot(cod.hw4, main="alpha=0.5")

plot(cod.hw5, main="alpha=0.7")

plot(cod.hw6, main="alpha=0.95")

plot(code.hw1, main="Optimal alpha=0.04627398") # the optimal one.

(c) After completing the plots, the reader will see in the figure that as the α increases, the exponential smoother tries
to follow each single movement of the series, that is, it is replicating irregular observations, fitting noise, which
is nonsense. The smoother should only replicate what is a signal in the data, the only thing that can be used to

20

Sanchez, J. Time Series for Data Scientists. CUP 2023.
Chapter 2 Solutions to Exercises, Problems and Quiz

predict. That is why we use statistics, to extract signals from noisy data according to some optimality criterion.

□

2.6.4 Exercises

Exercise 2.20
x̂5 = γ̂0,5 + γ̂1,5 = 191.9221 + 16.08943631 = 208.0115

x̂6 = γ̂0,6 + γ̂1,6 = 176.4625 + 9.95799391 = 186.4205

□

Exercise 2.21
We may use Program ch2trend-exp-smoother.R to start, but adapting it to the LakeHuron time series.

R code to do Trend Corrected Exponential Smoothing.

?LakeHuron

LH = LakeHuron

class(LH) ## already a ts object

#(b)

plot.ts(LH, main="Level of Lake Huron 1875-1972", ylab="Level(feet")

train=window(LH, end=1967)

test=window(LH, start=1968)

(c) HoltWinters command now

#will find optimal alpha and Beta. Notice how we do

not specify those parameters, to let R find them

LH.hw=HoltWinters(train,gamma=FALSE)

LH.hw

LH.hw$SSE

Find the RMSE

sqrt(LH.hw$SSE/length(train))

fitted=fitted(LH.hw)

fitted

see the last training set gamma_0 and gamma_1

21

Sanchez, J. Time Series for Data Scientists. CUP 2023.
Chapter 2 Solutions to Exercises, Problems and Quiz

(d) Forecast and compare forecast with actual values

forecasts=predict(LH.hw,n.ahead=5, prediction.interval = TRUE,

level = 0.95)

forecasts

#install.packages(TSstudio)

library(TSstudio)

We reshape the data in order to create a data frame with date as variable in one column.

#The ts_to_prophet function is from library(TSstudio). It is a useful function to put

the data as data frame, which will be convenient to compare data and forecast.

df.test.data=ts_to_prophet(test) #ds is date, y is LakeHuron level in this exercise

df.test.data

df.forecast=data.frame(forecasts[,3], forecasts[,1], forecasts[,2])

df.forecast

df.compare=data.frame(df.test.data, df.forecast)

add the forecasts to the data frame

names(df.compare)=c("Year", "TestSet level", "lwr", "forecast", "upr")

df.compare # By viewing this you will find the answer to part (d)

(e)

par(

mfrow=c(1,1),

font.axis=2,

mar=c(5,5,5,5),

font.main=2,

font.lab=2

)

plot(LH.hw, forecasts,lwd=1.5,cex=0.5, lty=1,

main="Level of Lake Huron.\n

Trend-corrected exponential smoothing",ylab="Level (feet)")

legend("topleft", legend=c("fitted and forecast"),

lty=1, col="red")

lines(test)

dev.off()

(a) Base R got the data from author Brockwell and Davis. The data appears in two of this author’s books.

(b) The time plot reveals that Lake Huron’s level is decreasing over time.

(c) There are many predicted or fitted values in the training period. Running the program you will see them. They
correspond to object fitted.

22

Sanchez, J. Time Series for Data Scientists. CUP 2023.
Chapter 2 Solutions to Exercises, Problems and Quiz

(d) The forecasts are as given next.

Year data lwr forecast upr

1 1968-01-01 578.52 576.8554 578.5201 580.1849

2 1969-01-01 579.74 576.0852 578.6603 581.2353

3 1970-01-01 579.31 575.3715 578.8004 582.2293

4 1971-01-01 579.89 574.6590 578.9405 583.2221

5 1972-01-01 579.96 573.9297 579.0807 584.2316

As we can see, in 1970, the level of Lake Huron was 579.31 feet. The forecasted value using HW exponential
smoothing is 578.8004. We also observe that all values of time series data fall between the lower (lwr) and upper
(upr) vaiues of the prediction interval, which is a good sign.

(e) Judging by the plot obtained with the code for this Exercise, the fit obtained with trend corrected HW follows the
time series very closely. We did not plot the prediction intervals, but the reader is invited to make a separate plot
containing only the forecast, the interval and the raw test data, which well labeled and colored with a nice legend
will show more detail about the forecast.

□

2.6.6 Exercises

Exercise 2.22
The output for the three coefficients of the Holt-Winters trend-seasonal exponential smoothing are

α = 0.77999853, β = 0.01999391, γ = 0.62089830

xt = γ0t + γ1t + γ2t + wt

where γ0t, γ1t and γ2t change slowly over time according to the smoothing equations:

γ̂0t = 0.77999853(xt−1 − γ̂2,t−p) + (1 − 0.77999853)(γ̂0,t−1 + γ̂1,t−1)
γ̂1t = 0.01999391(γ̂0t − γ̂0,t−1) + (1 − 0.01999391)γ̂1,t−1

γ̂2t = 0.62089830(xt − γ0t) + (1 − 0.62089830)γ2,t−p,

where, if the time series is monthly, p=12; if the time series is quarterly, then p=4, etc.

myairpassengers=as.numeric(AirPassengers)

head(myairpassengers)

sex4 <-function (x, a, b, d, s, k)

{

s1 <- s + 1

m <- x*0+mean(x[1:s])

bigc <- seq(s)

bigc <- x[1:s] - mean(x[1:s])

23

Sanchez, J. Time Series for Data Scientists. CUP 2023.
Chapter 2 Solutions to Exercises, Problems and Quiz

Tr <- m

Tr[1] <- (x[4] - x[1])/3

Tr[s]<-mean(x[2:s1])-mean(x[1:s])

xhat <- Tr

e <- m

for (j in s1:k) {

im <- j%%s

if(im==0) (im<-s)

m[j] <- a * (x[j - 1] - bigc[cyc((im - 1),s)]) + (1 - a) * (m[j -

1] + Tr[j - 1])

Tr[j] <- b * (m[j] - m[j - 1]) + (1 - b) * Tr[j - 1]

bigc[im] <- d * (x[j - 1] - m[j - 1]) + (1 - d) * bigc[im]

xhat[j] <- m[j] + Tr[j] + bigc[im]

e[j] <- x[j] - xhat[j]

}

sse <- crossprod(e[s1:k], e[s1:k])

sse

}

####

eforecast5<-function (yseries,s, k)

#this hooks minimizer to esmoother

ie Holt Winters no seasonal

{

f <- function(p)

{a<-c(1,1)

a[1]<-exp(p[1])/(1+exp(p[1]))

a[2]<-exp(p[2])/(1+exp(p[2]))

a[3]<-exp(p[3])/(1+exp(p[3]))

sex4(yseries, a[1], a[2], a[3],2,k)

}

p <- c(0.5, 0.5,0.5)

m1<- nlm(f, c(0.5, 0.5,0.5))

a<-m1$estimate[1]

a<-exp(a)/(1+exp(a))

b<-m1$estimate[2]

b<-exp(b)/(1+exp(b))

d<-m1$estimate[3]

d<-exp(d)/(1+exp(d))

print(c(a,b,d))

mm<-length(yseries)

time<-seq(mm)

24

Sanchez, J. Time Series for Data Scientists. CUP 2023.
Chapter 2 Solutions to Exercises, Problems and Quiz

Tr<-yseries

m<-yseries

s1 <- s + 1

m <- m*0+mean(yseries[1:s])

bigc <- seq(s)

bigc <- yseries[1:s] - mean(yseries[1:s])

Tr <- m

Tr[1] <- (yseries[4] - yseries[1])/3

Tr[s]<-mean(yseries[2:s1])-mean(yseries[1:s])

xhat <- Tr

e <- m

for (j in s1:mm) {

im <- j%%s

if(im==0) (im<-s)

m[j] <- a * (yseries[j - 1] - bigc[cyc((im - 1),s)]) + (1 - a) * (m[j -

1] + Tr[j - 1])

Tr[j] <- b * (m[j] - m[j - 1]) + (1 - b) * Tr[j - 1]

bigc[im] <- d * (yseries[j - 1] - m[j - 1]) + (1 - d) * bigc[im]

xhat[j] <- m[j] + Tr[j] + bigc[im]

e[j] <- yseries[j] - xhat[j]

gammahats[j,]=c(j, m[j], Tr[j], bigc[im]) # gives errors...

}

plot(time,yseries,type="b")

fseries<-c(yseries[1:s],xhat[s1:mm])

points(time,fseries,pch="+")

xhat

}

cyc<-function(i,s)

{if (i>0) (y<-i)

else (y<-(s+i))

y

}

We type our own code now.

n=length(myairpassengers); n

gammahats=matrix(0,nrow=143,ncol=4)

Note that we added to the function eforecast5 code to enter the

t, m (gammahat0t), the Tr (gammahat1t) and the bigc(gammahat2t)

into the matrix, so that we can answer the exercise.

eforecast5(myairpassengers, 12,n)

25

Sanchez, J. Time Series for Data Scientists. CUP 2023.
Chapter 2 Solutions to Exercises, Problems and Quiz

□

Exercise 2.23
See Section 2.6.1 and Example 2.4 and the program ch2simpleexpsmooth.R. The following framed R code is based on
that script file

set working directory to CH2-CODE-DATA-BASER folder in timeseriestime.org

cod=read.table("cod.txt") # A very short time series

cod

(a) Find mean

mean(cod[,2])

(b)

make the data a time series object and plot it.

cod.ts=ts(cod[,2],start=c(1979,1),end=c(1980,12),freq=12)

plot(cod.ts,ylab="Monthly Cod Catch (in Tons)")

(c) Simple exponential smoothing

cod.hw1=HoltWinters(cod.ts,beta=F,gamma=F)

cod.hw1

cod.hw1$SSE

cod.hw1$coef

plot(cod.hw1)

cod.fitted=cod.hw1$fitted

cod.fitted

####(d) Forecast

forecast.cod=predict(cod.hw1,n.ahead=4)

forecast.cod

par(mfrow=c(1,1),

font.axis=2,

mar=c(5,5,5,5),

font.main=2,

font.lab=2

)

ts.plot(cod.ts,forecast.cod,lty=1:2, col=c("black", "red"), lwd=c(3,3),

main="Simple Exp smoother forecast of cod")

legend("topright", legend=c("data","forecast"), col=c("black","red"),

lty=c(1,2),lwd=c(3,3))

(e)

26

Sanchez, J. Time Series for Data Scientists. CUP 2023.
Chapter 2 Solutions to Exercises, Problems and Quiz

Non-optimal alpha. We should notice that the SEE is

larger when a nonoptimal alpha is used.

cod.hw2=HoltWinters(cod.ts,alpha=0.3,beta=F,gamma=F)

cod.hw3=HoltWinters(cod.ts,alpha=0.5,beta=F,gamma=F)

cod.hw5=HoltWinters(cod.ts,alpha=0.7,beta=F,gamma=F)

See how the plot looks when fitting with alpha=0.3

cod.hw2=HoltWinters(cod.ts,alpha=0.3, beta=F,gamma=F)

cod.hw2

cod.hw2$SSE

cod.hw2$coef

plot(cod.hw2)

(a) The average monthly cod catch is 351.2917 tons.

(b) There is no visible trend, and the time series fluctuates randomly around its mean, without explicit pattern.

(c) If xt is the value of cod catch at time t, then the model is

µ̂t+1(t) = 0.04627xt + (1 − 0.04627)m̂ut(t − 1)

See page 91

hatµ24(t) = 0.04627x23 + (1 − 0.04627)m̂ut(23) = 0.04627(314) + (1 − 0.04627)354.7772 = 352.8904

a1980,12 = 352.8904

MS E = S S E/24 = 1181.582

(d) The forecasts for the first four months are:

Jan Feb Mar Apr

1981 353.4506 353.4506 353.4506 353.4506

We obtain them by updating the equation given in part (c). After the first forecast, which is given by the value of
a in the output of the statement

cod.hw1

, the predictions are constant and equal to a as there is no new data to be updated.

(e) With α = 0.3 the SSE is much larger (SSE=33177.3) than with the optimal (which is SSE=28357.97). In fact, any
alpha that is not the optimal will give larger SSE, which makes sense since the optimal is the one that minimizes
the SSE.

In addition to that, we notice that the fit is trying to following the noise, overfitting.

□

Exercise 2.24
The JohnsonJohnson data set is a ts object that comes with Base R. Therefore, all we have to do is window it to
create the training and test set, and then apply the Base R HW exponential smoothing function for trend and seasonal.

27

Sanchez, J. Time Series for Data Scientists. CUP 2023.
Chapter 2 Solutions to Exercises, Problems and Quiz

? JohnsonJohnson # find out what is being measures

Not a large time series so look at it

JJ= JohnsonJohnson

JJ

class(JJ) # notice that it is a ts object

plot.ts(JJ) # quick time plot view

start(JJ); end(JJ); frequency(JJ)

training=window(JJ, end=c(1977,4), frequency=4)

test=window(JJ, start=c(1978,1), frequency=4)

(a)

JJ.hw1= HoltWinters(training)

plot(JJ.hw1)

JJ.hw1$coef

forecast.JJ=predict(JJ.hw1,n.ahead=12)

forecast.JJ

cbind(test, forecast.JJ)

(b)

Produce plot like that in Figure 2.12

JJ.fitted=JJ.hw1$fitted

JJ.fitted

par(mfrow=c(1,1),

font.axis=2,

mar=c(5,5,5,5),

font.main=2,

font.lab=2

)

ts.plot(JJ,forecast.JJ, lty=1:2, col=c("black", "blue"), lwd=c(3,3),

main="Simple Exp smoother forecast of JJ")

lines(JJ.fitted[,1], lty=3,col="red", lwd=3)

legend("topleft", legend=c("training and test data","fitted", "forecast"),

col=c("black","red","blue"),

lty=c(1,3,2),lwd=c(3,3, 3))

calculating RMSE of forecast

RMSE.forecast=sqrt((sum(test-forecast.JJ)ˆ2)/12)

RMSE.forecast

(c)

plot(JJ.fitted) # decomposition.

(d)

28

Sanchez, J. Time Series for Data Scientists. CUP 2023.
Chapter 2 Solutions to Exercises, Problems and Quiz

We might be tempted to do the regression using the

components of exponential smoothing. But we do not know

what those components are in the future, so we would not

be able to give the regression the independent variables for

the future. We can just fit the training set. For that, the

training length is larger than JJ.fitted, due to the

calculations done for the latter. So to do regression,

we window the training data. The following code would fit

the window of the training data.

train.for.reg=window(training, start=c(1961,1),frequency=4)

regmodel= lm(train.for.reg˜JJ.fitted[,1]+JJ.fitted[,2]+JJ.fitted[,3])

summary(regmodel) # we will not use this model.

plot(regmodel)

Alternative regression that allows us to forecast.

Create the independent variables

We take the seasonal effect obtained from decomposition.

We apply the decomposition to the whole data because

we want to have the values of the seasonal effect for the test

period. We use multiplicative because the seasonal increases

with the trend.

seas=decompose(JJ,type="mult")$seasonal

seas

We create a variable that will allow us to consider

an exponential trend: trend=exp(t)

a=seq(1:length(JJ))

t=ts(a, start=c(1960,1), frequency=4)

We then split both independent variables.

seas.training=window(seas, end=c(1977,4), frequency=4)

seas.test=window(seas, start=c(1978,1), frequency=4)

trend.training=window(t, end=c(1977,4), frequency=4)

trend.test= window(t,start=c(1978,1), frequency=4)

regression model fitted to training data after some trial and error.

Note that because the seasonal effect is multiplicative, the

independent variables would be multiplied. To have linear regression

we take logs. Log of exp(trend) is equal to trend.

Raw model is: training=(seasonal effect)*trend

29

Sanchez, J. Time Series for Data Scientists. CUP 2023.
Chapter 2 Solutions to Exercises, Problems and Quiz

In log form: log(training)=(log seasonal effect)+ (log trend)

model5=lm(log((training)) ˜(trend.training)

+log((seas.training)))

summary(model5)

resid=ts(model5$residuals, start=c(1960,1), frequency=4)

plot.ts(resid)

abline(h=0) # residuals have some pattern.

acf(resid) # the model does not capture all the seasonalities. Not great.

we calculate the fitted value in the original scale of the data

the fitted are given as log, so we must unlog them.

fitted=ts(exp(model5$fitted), start=c(1960,1), frequency=4)

Check the fit visually

plot.ts(training, main="Fitted values (red) and training (black)",

ylab="Earnings ($)")

lines(fitted, col="red")

prepare the independent variables needed for the forecast.

They are their test set values, but must give the same name

as in the original regression.

out.of.sample.data=data.frame(trend.training=trend.test,

seas.training=seas.test)

out.of.sample.data

Obtain the forecasts

forecastlist=predict(model5, 12,

newdata=out.of.sample.data)

forecastlist

forecast=exp(forecastlist$fit) #extract the forecasted values

forecast.ts=ts(forecast, start=c(1978,1), frequency=4)

plot.ts(JJ,lty=1,

col=c("black"),type="l",

xlab="Time", ylab="Earnings ($)", cex=1.5,pch=c(2),

30

Sanchez, J. Time Series for Data Scientists. CUP 2023.
Chapter 2 Solutions to Exercises, Problems and Quiz

main="JJ fitted and forecasted with multiple regression")

lines(fitted, col="red", lty=2)

lines(forecast.ts,col="blue",lty=2,cex=1.5,pch=c(2))

legend("topleft", c("Training and test", "fitted", "forecast"),

col=c("black", "red", "blue"),lty=c(1,2,2))

Calculate the RMSE

RMSE1.forecast=sqrt((sum(test-forecast.ts)ˆ2)/12)

RMSE1.forecast

RMSE1.forecast=sqrt((sum(as.numeric(test)-as.numeric(forecast.ts))ˆ2)/12)

RMSE1.forecast

Calculate the RMSE of the average forecast

average= (forecast.ts + forecast.JJ)/2

check=cbind(average,forecast.ts, forecast.JJ, test)

check

RMSE.average.forecast=sqrt((sum(test-average)ˆ2)/12)

RMSE.average.forecast

#compare forecasts

plot.ts(test,ylab="Earnings ($)", main="Comparing forecasts")

lines(average, col="blue")

lines(forecast.JJ, col="green")

lines(forecast.ts, col="maroon")

legend("topleft", c("Average forecast", "Exp smoothing forecast",

"Regression forecast"),

col=c("blue", "green", "maroon"),lty=c(1,2,2))

(a) Apply trend and seasonal Holt-Winters exponential smoothing to the JohnsonJohnson time series. Program
ch2trend-exp-smoother.R is a good way to start, focusing on the bottom portion of the program. Forecast three
years ahead (12 quarters).

The forecasts compared with the test data values are contained in the following table.

test forecast.JJ

1978 Q1 11.88 10.696291

1978 Q2 12.06 11.479833

1978 Q3 12.15 10.904330

1978 Q4 8.91 9.924309

1979 Q1 14.04 11.993735

1979 Q2 12.96 12.777277

1979 Q3 14.85 12.201773

31

Sanchez, J. Time Series for Data Scientists. CUP 2023.
Chapter 2 Solutions to Exercises, Problems and Quiz

1979 Q4 9.99 11.221752

1980 Q1 16.20 13.291178

1980 Q2 14.67 14.074720

1980 Q3 16.02 13.499217

1980 Q4 11.61 12.519196

(b) Run the R program to see the plot.

With trend and seasonal exponential smoothing, the forecast RMSE is 3.1051

(c) We observe that the level is increasing exponentially, the trend seems to have shifted in 1970.

(d) Fit an appropriate regression model to the training set of data, like the example in the Regression smoothers
section of this chapter. Forecast 12 quarters ahead and compare the RMSE of the forecast obtained with the
regression with that obtained with the trend and seasonal exponential smoothing. Which one produced the
lowest RMSE? Notice that it is very common practice in forecasting to fit a gallery of models to the same time
series and then compare the forecasts errors.

The RMSE with the regression model that we fit is: 5.579191, which is larger than the one obtained with
exponential smoothing in part (b).

The model fitted used as independent variables an exponential trend and the seasonal effects of a multiplicative
decomposition and had the following original form:

Y = (et) ∗ (seasonale f f ect)

where Y is the training data, t is a time variable. We logged all components of this model.

(e) The RMSE of the average forecast is 1.237, much lower that either single forecast.

□

Exercise 2.25
As examples to get started using fpp3 to do classical decomposition and exponential smoothing for cases that we have
already studied in Chapter 2 with Base R programs, see programs: ch2sodasales-fpp3version.R and ch2simpleexpsmooth-
fpp3version.R

□

2.7.1 Exercises

Exercise 2.26
We will present here an example of the use of prophet.The R program that follows, if run, will illustrate what needs
to be done to forecast with Facebook’s prophet. Run it function by function to avoid missing details. In the first part of
the program, we will not change the default arguments of the function prophet to see what we get. The default fit fits
an additive seasonal. In the second part of the program, we change one of the arguments (parameters in ML language)
by making seasonality.mode=”multiplicative.”

32

Sanchez, J. Time Series for Data Scientists. CUP 2023.
Chapter 2 Solutions to Exercises, Problems and Quiz

#install.packages("prophet") # remove # if not installed and run

library(prophet)

#install.packages("TSStudio") # remove # if not installed and run

library(TSstudio) # has the function ts_to_profit() helpful to convert a

ts object to a data frame like those prophet likes.

?prophet()

Will forecast AirPassengers with prophet.

AP = AirPassengers

AP # it is small data set, so look at it

start(AP); end(AP)

length(AP)

#Split the data into a training set to fit model and test set to compare with forecast

training=window(AP, end=c(1958,12)) # training 1949:1-1958-12

test=window(AP,start=c(1959,1)) # test 1959:1- 1960:12

#Convert the training and test data to a format that the prophet function accepts

df= ts_to_prophet(training)

df_test=ts_to_prophet(test)

Invoke prophet() without changing the default arguments of the function

m=prophet::prophet(df)

m

Creates a data frame where to put prophet’s fitted values

for AP and the forecast

future=make_future_dataframe(m,periods=24, freq="month")

head(future)

tail(future)

Fit the model and forecast the 24 months of the test period.

forecast=predict(m, future) # This is a data frame

View some of the produced fitted values and the forecast.

Notice that a prediction interval accompanies the point fitted

#and point forecast

head(forecast[c("ds","yhat","yhat_lower","yhat_upper")], n=12)

tail(forecast[c("ds","yhat","yhat_lower","yhat_upper")], n=12)

class(forecast)

plot the fitted and the forecast. The dots are the data.

plot(m,forecast,xlab="Time",

ylab="Number of airline passengers")

#Extract the forecasted values only

last24forecast=forecast$yhat[121:144]

last24forecast

33

Sanchez, J. Time Series for Data Scientists. CUP 2023.
Chapter 2 Solutions to Exercises, Problems and Quiz

Plot just the forecast and the test data

plot(ts(df_test[,2],start=c(1959,1)), ylab="Test set number of passengers")

lines(ts(last24forecast, start=c(1959,1)),col="red")

lines(ts(forecast$yhat_lower[121:144], start=c(1959,1)), col="blue")

lines(ts(forecast$yhat_upper[121:144], start=c(1959,1)), col="blue")

Calculate the root mean square error of the forecast.

rmse_prophet= sqrt(mean((df_test$y-last24forecast)ˆ2))

rmse_prophet

#####################################

Since the additive seasonality

#does not give very good forecast, we can try

now with multiplicative

##

Note if RStudio complaints then close it and

start again running from now on.

#install.packages("prophet") # remove # if not installed and run

library(prophet)

#install.packages("TSStudio") # remove # if not installed and run

library(TSstudio) # has the function ts_to_profit() helpful to convert a

ts object to a data frame like those prophet likes.

?prophet()

Will forecast AirPassengers with prophet.

AP = AirPassengers

AP # it is small data set, so look at it

start(AP); end(AP)

length(AP)

#Split the data into a training set to fit model and test set to compare with forecast

training=window(AP, end=c(1958,12)) # training 1949:1-1958-12

test=window(AP,start=c(1959,1)) # test 1959:1- 1960:12

#Convert the training and test data to a format that the prophet function accepts

df= ts_to_prophet(training)

df_test=ts_to_prophet(test)

Invoke now prophet() changing only the seasonality.mode argument

m=prophet::prophet(df,

seasonality.mode="multiplicative")

m

Creates a data frame where to put prophet’s fitted values

for AP and the forecast

future=make_future_dataframe(m,periods=24, freq="month")

34

Sanchez, J. Time Series for Data Scientists. CUP 2023.
Chapter 2 Solutions to Exercises, Problems and Quiz

head(future)

tail(future)

Fit the model and forecast the 24 months of the test period.

forecast=predict(m, future) # This is a data frame

View some of the produced fitted values and the forecast.

Notice that a prediction interval accompanies the point fitted

#and point forecast

head(forecast[c("ds","yhat","yhat_lower","yhat_upper")], n=12)

tail(forecast[c("ds","yhat","yhat_lower","yhat_upper")], n=12)

class(forecast)

plot the fitted and the forecast. The dots are the data.

plot(m,forecast,xlab="Time",

ylab="Number of airline passengers")

#Extract the forecasted values only

last24forecast=forecast$yhat[121:144]

last24forecast

Plot just the forecast and the test data

plot(ts(df_test[,2],start=c(1959,1)), ylab="Test set number of passengers")

lines(ts(last24forecast, start=c(1959,1)),col="red")

lines(ts(forecast$yhat_lower[121:144], start=c(1959,1)), col="blue")

lines(ts(forecast$yhat_upper[121:144], start=c(1959,1)), col="blue")

Calculate the root mean square error of the forecast.

rmse_prophet= sqrt(mean((df_test$y-last24forecast)ˆ2))

rmse_prophet

Judging by the plot of the forecast and what is going on with the fit observed in the plots for the last year, we
can see that an additive model for the AirPassengers data set is not a good idea. A lot of the data points are outside
the prediction intervals in the last years of the fit and the two years of the forecast. Following the first principles
learned in Chapter 2, learned with classical decomposition and comments on exponential smoothing, we either do a
multiplicative prophet model or we log the AirPassengers data set before we apply prophet.

In the code provided, when we change the seasonality.mode argument (called parameter in ML language) to
multiplicative and we obtain a RMSE of 31.124, compared to an RMSE of 40 for the additive. However, we still
notice that the prediction interval does not contain some of the data points. So tuning the other arguments might be
necessary. Each domain of applications know what parameters matter for their situation. With just default, we many
not do very well, as the example shown illustrates. The forecast is in line with the data with the default, but perhaps
we can do better.

□

35

Sanchez, J. Time Series for Data Scientists. CUP 2023.
Chapter 2 Solutions to Exercises, Problems and Quiz

Completed Table 2.8. Data. Complete the table

Time yt ma4 T̂ d = yt − T̂ Ŝ ŷt = T̂ + Ŝ
1989q1 293 70.5917

1989q2 392 210.7667
263.25

1989q3 221 275.125 −54.125 −76.95 198.175
287

1989q4 147 302 −155 −204.4083 97.5917
317

1990q1 388 325.25 62.75 70.5917 395.8417
333.5

1990q2 512 338.125 173.875 210.7667 548.8917
342.75

1990q3 287 354.125 −67.125 −76.95 277.175
365.5

1990q4 184 381.5 −197.5 −204.4083 177.0917
297.5

1991q1 479 405 74 70.5917 475.5917
412.5

1991q2 640 417.375 222.625 210.7667 628.1417
422.25

1991q3 347 435 −88 −76.95 358.05
447.75

1991q4 223 462.125 −239.125 −204.4083 257.7167
476.5

1992q1 581 484.375 96.625 70.5917 554.9667
492.25

1992q2 755 497.625 257.4 210.7667 708.3667
503

1992q3 410 −76.95

1992q4 266 −204.4083

2.8 Problems

Problem 2.1
We first complete the table manually.

We can see how we obtained the seasonal effects column Ŝ for Table 2.8 by calculating:

s̄q1 = 62.75 + 74 + 96.6253 = 77.7917

s̄q2 = 173.875 + 222.625 + 257.43 = 217.9667

s̄q3 = −54.125 − 67.125 − 883 = −69.75

s̄q4 = −155 − 197.5 − 239.1253 = −197.20833

∑
s̄ = 28.8001

36

Sanchez, J. Time Series for Data Scientists. CUP 2023.
Chapter 2 Solutions to Exercises, Problems and Quiz

(1/4)
∑

s̄ = 7.2

Subtract this from the s̄s.
Ŝ q1 = 77.7917 − 7.2 = 70.5917

Ŝ q2 = 217.9667 − 7.2 = 210.7667

Ŝ q3 = −69.75 − 7.2 = −76.95

Ŝ q4 = −197.20833 − 7.2 = −204.4083

Those seasonal effects that we obtained manually are the same as those obtained with Base R’s function decom-
pose (except for some rounding error). The reader may confirm that by running the R program that follows.

The estimate of the trend that we obtained for Table 2.8 is the same as that obtained with decompose() in Base
R. Clearly, R’s decompose(), like us, is using a centered 4-point moving average to estimate the trend and obtain the
seasonal effects that follow.

The plot of the data and the fitted moving average model can be obtained by running the following R program.

Running the following program will also produce the plot containing the raw data, the seasonal adjusted data and
the detrended data. The seasonally adjusted data show only the trend and random term. The detrended data shows
only the seasonal effect and the random term.

We enter the data and the yhat from Table 2.8

y=c(293, 392, 221, 147, 388, 512, 287,

184, 479, 640, 347, 223, 581, 755, 410, 266)

y.ts=ts(y, start=c(1989,1), end=c(1992, 4), frequency=4)

yhat=c(198.175, 97.5917, 395.8417, 548.8917, 277.175,

177.0917, 475.5917, 628.1417, 358.05, 257.7167,

544.9667, 708.3667)

yhat.ts=ts(yhat, start=c(1989,3), end=c(1992,2), frequency=4)

min(y); max(y) # will to be able to see all in plot

min(yhat); max(yhat)

Plot of the data with the fitted values superimposed

par(

mfrow=c(1,1),

font.axis=2,

mar=c(5,5,5,5),

font.main=2,

font.lab=2

)

plot.ts(y.ts,

main="Data and fitted additive decomposion \n

model in Table 2.8",

ylab="y and yhat",

37

Sanchez, J. Time Series for Data Scientists. CUP 2023.
Chapter 2 Solutions to Exercises, Problems and Quiz

ylim=c(80, 780),

lwd=2, cex=1.5, lty=1, pch=1

)

lines(yhat.ts, col="red", lwd=3, cex=1.5, lty=2, pch=3)

legend("topleft", c("data (y)", "fitted"),

col=c("black", "red"),lty=c(1,2), lwd=c(2,3))

dev.off() If you uncomment and run, the plot will disappear

We now use decompose() and compare its

trend and seasonal estimate

decompose(y.ts)

fitted=decompose(y.ts)$trend+decompose(y.ts)$seasonal

fitted # The same values as those obtained in Table 2.8

"seasonally adjusted data"= y-seasonal effect

seas.adjust= y.ts - decompose(y.ts)$seasonal

class(seas.adjust)

"detrended data"=y-trend (but we lose some observations)

detrended=window(y.ts, start=c(1989,3), end=c(1992,2), frequency=4)-

decompose(y.ts)$trend

class(detrended)

min(detrended); max(detrended)

Quick plot to visualize the raw original data and the other

par(

mfrow=c(1,1),

font.axis=2,

mar=c(5,5,5,5),

font.main=2,

font.lab=2

)

plot.ts(y.ts, main="Raw data", ylim=c(-250, 800), cex=1.5, lwd=2, lty=1)

lines(seas.adjust, main="Seasonally adjusted",

lty=2, col="blue", cex=1.5, lwd=2)

lines(detrended, main="detrended",

lty=2, col="purple", cex=1.5,lwd=2)

legend("topleft",

c("data (y)", "seasonally adjusted only", "detrended only"),

38

Sanchez, J. Time Series for Data Scientists. CUP 2023.
Chapter 2 Solutions to Exercises, Problems and Quiz

col=c("black", "blue", "purple"),lty=c(1,2,2), lwd=c(2,2,2))

□

Problem 2.2
See also Exercise 2.24.

(a)

The time series starts in 1960, quarter 1 and ends in 1980, quarter 4. A training data set from 1960:1 to 1979:4 is
created.

The time plot indicates upward trend with increasing variability and exponential kind of growth. There is a very
mild seasonality. The random term of the multiplicative decomposition is stationary, but it shows volatility, indicating
that the time series is conditionally heteroscedastic.

(b) R’s seasonal effects added to the trend each quarter are:

Quarter 1: 0.2216094;

Quarter 2: 0.2439844

Quarter 3: 0.3087344

Quarter 4: -0.7743281

The seasonal effects we obtain manually are

seasonal effect quarter 1: 0.2245156

seasonal effect quarter 2: 0.2468906

seasonal effect quarter 3: 0.3116406

seasonal effect quarter 4: -0.7714219

As we can see, the manual ones are very close to those that R obtains. The small difference could be due to
rounding error.

What I did to find those seasonal effects was to subtract from the time series the trend component first.

Y-T = random +seasonal

Then I took the average of (Y-T) for quarter one, then for quarter 2, etc. After that, I obtained a temporary seasonal
effect. To make the seasonal effects add to 0, I calculated the average of the four seasonal effects, and adjusted the
temporary seasonals by adding that adjustment.

The R code used to do the calculations requested is next.

######(a) ##############

#access it and check what type of R object it is

39

Sanchez, J. Time Series for Data Scientists. CUP 2023.
Chapter 2 Solutions to Exercises, Problems and Quiz

y=JohnsonJohnson ; y

class(y)

where it starts, where it ends, whether it is seasonal,

start(y); end(y); boxplot(y˜cycle(y))

Make a training data set that excludes the last year’s 4 quarters.

y.training=window(y,start=c(1960,1), end=c(1979,4))

class(y.training); start(y.training); end(y.training)

whether the time plot shows trend, and additive and multiplicative decomposition.

plot(y.training, main="Time plot of time series")

plot(decompose(y.training,type="additive"))

plot(decompose(y.training, type="mult"))

#####(b)###########

trend=decompose(y,type="add")$trend

seasonal=decompose(y,type="add")$seasonal

random=decompose(y,type="add")$random

Manually, after doing the smoothing (the trend in the decomp)

we would subtract Y-trend

y.minus.trend= y-trend

y.minus.trend ## need to view the data to see what we are aggregating

Then, we would take the average of all the Q1 y values, then the

average of all the Q2 y values , and do the same for Q3 and Q4

temp.Q1= window(y.minus.trend,start=c(1961,1),end=c(1980,1),freq=TRUE)

temp.Q1

S1.temp=mean(temp.Q1); S1.temp

temp.Q2= window(y.minus.trend,start=c(1961,2),end=c(1980,2),freq=TRUE)

temp.Q2

S2.temp=mean(temp.Q2); S2.temp

temp.Q3= window(y.minus.trend,start=c(1960,3),end=c(1979,3),freq=TRUE)

temp.Q3

S3.temp=mean(temp.Q3); S3.temp

temp.Q4= window(y.minus.trend,start=c(1960,4),end=c(1979,4),freq=TRUE)

temp.Q4

S4.temp=mean(temp.Q4); S4.temp

sum=S1.temp+S2.temp+S3.temp+S4.temp; sum

40

Sanchez, J. Time Series for Data Scientists. CUP 2023.
Chapter 2 Solutions to Exercises, Problems and Quiz

adjustment=sum/4

cat("seasonal effect quarter 1 is", S1.temp+adjustment, "\n",

"seasonal effect quarter 2 is",S2.temp+adjustment, "\n",

"seasonal effect quarter 3 is", S3.temp+adjustment, "\n",

"seasonal effect quarter 4 is", S4.temp+adjustment)

#Compare to R’s seasonal effect for each quarter

seasonal

□

Problem 2.3
We can view the image of the random term by plotting all the components.

add is the default for argument type=, so no need to type it. But

we will include for the sake of illustration.

plot(decompose(AirPassengers, type="add"))

title("\n Additive decomposition of the AirPassengers time series")

The plot of the random term at the bottom indicates that additive decomposition is not appropriate. The random
term has very heterogeneous variance over time. In the first interval and last interval the fluctuations around a constant
term are much larger than in the middle interval. This suggests that we should either (a) do multiplicative decomposi-
tion or (b) log the data before doing additive decomposition. Logging is appropriate when the variability increases or
decreases with the trend.

□

Problem 2.4
Dataset nhtemp contains the mean annual temperature in degrees Fahrenheit in New Haven, Connecticut, USA, from
1912 to 1971. With a time plot, we can see that there is a slight trend upward in the data. The time series fluctuates
randomly around that trend. I would suggest a trend corrected exponential smoothing.

The following program will provide the information needed to answer the questions.

?nhtemp

class(nhtemp) # ts object with annual data

start(nhtemp); end(nhtemp); frequency(nhtemp)

it is a short series so you can view

nhtemp

plot.ts(nhtemp) # quick time plot

41

Sanchez, J. Time Series for Data Scientists. CUP 2023.
Chapter 2 Solutions to Exercises, Problems and Quiz

(a) create training and test set

training=window(nhtemp,end=1970, frequency=1)

test=window(nhtemp, start=1971, frequency=1)

Do trend corrected exponential smoothing

hw1= HoltWinters(training, gamma=F)

hw1

hw1$SSE

RMSE= sqrt(hw1$SSE/length(training))

plot(hw1) # View fit

fitted=fitted(hw1)

fitted # View updated values equation values.

-Exp smoothing decomposition

plot(fitted, main="HW decomposition of Temperature/n ")

#####

(b) Forecast for 1971

#####

forecast=predict(hw1,n.ahead=1, prediction.interval = TRUE,

level = 0.95)

forecast # gives the forecast for the test period, and the 95%

hw# upper and lower

prediction intervals to indicate uncertainty of the forecast

(a) Let x denote temperature. The fitted smoother, starting with year 1914, is

x̂t = γ̂0t + γ̂1t, (1)

and the updating (smoothing) equations are, after substituting for the smoothing (updating) parameters alpha and
beta obtained with the program are:

γ̂0t = γ̂0,t−1 + 0.6479(xt−1 − γ̂0,t−1) + γ̂1,t−1,

γ̂1t = 0.3031(γ̂0t − γ̂0,t−1) + (1 − 0.3031)γ̂1,t−1

(b) The forecasted value of level and trend are added to obtain the

42

Sanchez, J. Time Series for Data Scientists. CUP 2023.
Chapter 2 Solutions to Exercises, Problems and Quiz

x̂t = γ̂0,1971 + γ̂1,1971 = 52.007 = 51.8861 + 0.1146, (2)

□

Problem 2.5
The information about the data (the metadata) can be found at https://jse.amstat.org/datasets/bestbuy.txt

The data pointed to by the url inside the R program given in the problem contains also the information on the
forecasts done by the author of the Best Buy article. To simplify the analysis, and because it is such a small data set, we
provide the values of MIPS in the program that follows (bb.data) and enter the dates by making the data a ts object
a ts object that uses the time information that is given in http://jse.amstat.org/datasets/bestbuy.dat.txt

Following is an R program adapted for the new location and containing the exponential smoothing code for this
problem.

We notice in the time plot produced that the seasonality is not very regular. We check decomposition to see what
would be the dimension of such seasonality, and we find that the seasonal effect goes from approximately −20 to
approximately 45, so it is not negligible. We look at the seasonal boxplot which confirms that. The trend and seasonal
exponential smoother is then computed. Notice that we do not know the data beyond July 2007 (we do not split into
training and test set),so we do not calculate the RMSE. To calculate the latter, we need to have data for the future

bb.data =c(145.2, 150.5, 153.1, 136.1, 152.6, 143.5, 145.9, 148.3, 159.1,

165.1, 167.5, 179.1, 192.9, 197.9, 212.0, 191.1, 219.5, 196.1,

212.0, 226.6, 214.1, 206.6, 218.3, 235.0, 266.4, 218.9,254.8,

269.1, 297.3, 274.5, 279.4, 292.3, 305.7, 304.9, 347.8, 358.0,

393.5, 428.2, 432.6, 453.8, 531.8, 472.3, 436.5, 470.4, 425.0,

416.6, 385.1, 488.5)

head(bb.data)

length(bb.data)

make a ts object (notice that the program posted for Problem 2.5 in the

book is missing by mistake the frequency argument, which is necessary

because the time series is monthly. We correct that)

bb=ts(bb.data,start=c(1996,8), end=c(2000,7), frequency=12)

bb

plot.ts(bb, main="Best Buy computer usage",

ylab="MIPS")

Seasonality is not obvious in the time plot. Look closer.

decompose(bb)

plot(decompose(bb))

boxplot(bb˜cycle(bb), xlab="Time",

ylab="MIPS", main="Monthly Best Buy computer usage\n

is higher in June and July")

We now do HoltWinters with seasonal and trend fitting

HW1= HoltWinters(bb)

HW1

fitted=fitted(HW1)

43

https://jse.amstat.org/datasets/bestbuy.txt
http://jse.amstat.org/datasets/bestbuy.dat.txt

Sanchez, J. Time Series for Data Scientists. CUP 2023.
Chapter 2 Solutions to Exercises, Problems and Quiz

fitted

plot(fitted(HW1))

forecasts=predict(HW1,n.ahead=17, prediction.interval = TRUE,

level = 0.95)

class(forecasts)

forecasts

Make a time series that contains the given data and

the forecasts

new=c(bb.data, as.numeric(forecasts[,1]))

new.ts=ts(new,start=c(1996,8), end=c(2001,12), frequency=12)

new.ts

plot.ts(new.ts, lty=1,col="black",

main="HW trend exponential smoother",

ylab="MIPS")

lines(fitted[,1], lty=2,col="red",lwd=3)

lines(forecasts[,1],lty=2,col="blue",lwd=3) # point forecasts

lines(forecasts[,3], lty=5,col="green",lwd=3) # lower prediction interval

lines(forecasts[,2], lty=5,col="green", lwd=3) # upper prediction interval

legend("topleft",

legend=c("data","fitted","forecast",

"lower and upper forecast interval"),

col=c("black","red","blue","green","green"),

lty=c(1,2,2,5,5),

lwd=c(1,3,3,3,3))

□

2.9 Quiz

Question 2.1
”that the seasonal effect is constant for each season over time”

The seasonal effect is a constant that differs across seasons but for a given season is constant each year. The
way we calculate implies that. If additive decomposition applies, then we add the seasonal effect to the trend. If
multiplicative decomposition applies, then we multiply the seasonal effect to the trend and we say that the seasonal
effect is proportional to the trend. See sections 2.3 and 2.4 in Chapter 2.

□

Question 2.2
Closest answer: ”the seasonal effect is proportional to the long term trend.”

44

Sanchez, J. Time Series for Data Scientists. CUP 2023.
Chapter 2 Solutions to Exercises, Problems and Quiz

We multiply the seasonal effect (which is constant for a given season each year) to the long term trend.

□

Question 2.3
”by adding the seasonal effect”

See section 2.2.2. □

Question 2.4
The seasonal swing is how much more or how much less than the trend value is the seasonal. In a multiplicative
decomposition model (see Section 2.4), we would calculate the seasonal swing at each time t as indicated in the
following program. Notice that we are not asking for the seasonal effect, but the swing value. The seasonal effect for
a given season is constant each year, but the seasonal swing is not.

?UKgas # find out the series’ metadata

plot(UKgas)

UKgas

boxplot(UKgas˜cycle(UKgas)) #inspect seasonal swings

a=decompose(UKgas,type="mult")

trend=a$trend

random=a$random

seasonal swing value is calculated as follows

swing=UKgas/(trend)

swing

When we print the swing object, we notice how the values of the seasonal swing are different for a given quarter
each year in contrast with the seasonal effect that we estimate with decompose. To see this graphically, the reader can
execute the following program.

par(

mfrow=c(1,1),

font.axis=2,

mar=c(5,5,5,5),

font.main=2,

font.lab=2

)

plot(swing,lty=1,lwd=1.5,cex=0.5)

seasonal=a$seasonal

lines(seasonal, col="red", lty=2,lwd=1.5,cex=0.5)

45

Sanchez, J. Time Series for Data Scientists. CUP 2023.
Chapter 2 Solutions to Exercises, Problems and Quiz

legend("topleft",

legend=c("seasonal swing","seasonal effect"),

col=c("black","red"),

lty=c(1,2),

lwd=c(1.5,1.5))

#to see the seasonal contrasting with increasing swing add

abline(h=max(seasonal))

abline(h=min(seasonal))

The red seasonal effect is between the horizontal bars.

legend("topleft", legend=c("swing", "seasonal effect"), col=c("black","red"), lty=c(1,2))

dev.off()

□

Question 2.5
an estimate of the seasonal swing

□

Question 2.6
4.4963

You may find out as follows, using R as a calculator.

y=ts(c(3.3602, -3.1769, 0.3484, 7.469, 4.4963), frequency=4)

T1=mean(c(3.3602, -3.1769, 0.3484, 7.469))

T2=mean(c(-3.1769, 0.3484, 7.469,4.4963))

mean(c(t1,t2))

□

Question 2.7
If there is a constant in the model, it will have 11 dummy variables. If there is no constant, it will have 12 dummy
variables. □

Question 2.8
subtracting the value of the moving average from the data.

□

46

Sanchez, J. Time Series for Data Scientists. CUP 2023.
Chapter 2 Solutions to Exercises, Problems and Quiz

Question 2.9
In additive decomposition the trend, the seasonal swing and random term are added and in multiplicative decomposi-
tion they are multiplied, in both cases to recover the actual value of the time series.

□

Question 2.10
There is only one solution: ”When using moving average smoothers”

□

47

