
Chapter 4 Solutions

4.2.1. Exercises

Exercise 4.1
(a) x∗t = ▽xt gives 0.5, 0.5, 0.5, 0.5, 0.1,−0.9,−1.2, 0.2

(b) x∗∗t = ▽4xt = (1 − B4)xt = 2, 1.6, 0.2,−1.5,−1.8 starting in line 5.

(c) x∗t = ▽
2xt = (1 − B)2xt gives 0, 0, -0.4, -1, -0.3, 1.4 starting in line 4.

(d) yt = ▽
4xt = (1 − B)4xt = (1 − B)2(1 − B)2xt gives 0,−0.4,−0.2, 1.3, 1

(e) wt = ▽4x9 = (1 − B4)x9 gives y9 − y5 = −2.2

(f) zt = ▽
(
▽4xt

)
= ▽yt gives −0.4, 0.2, 1.5,−0.3

□

4.2.6. Exercises

Exercise 4.2
Let xt be a monthly time series and yt = log(xt).Equation 4.1 says:

y∗ = ▽D
k ▽

d yt = (1 − Bk)D(1 − B)dyt

where y∗t is the differenced series.

According to the problem, in backshift polynomial form, if the seasonality was monthly, that expression would
give us a time series y∗t equal to the following difference operator and backshift operator operations, respectively:

y∗t = ▽
2
12 ▽

2 yt = (1 − B12)2(1 − B)2yt,

It xt had been quarterly, and yt = log(xt), with quarterly seasonality, we would have an expression for y∗t in
difference operator and backshift operator operations, respectively, equal to:

y∗t = ▽
2
4 ▽

2 yt = (1 − B4)2(1 − B)2yt

□
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Exercise 4.3
The following R code with comments indicates what we did in R. After that code, we write the final differencing and
backshift expression.

x=AirPassengers ## already a ts() object

plot.ts(x, main="Upward linear-like trend and variance increasing\n

proportional to the trend (at least in appearance)")

## We try to see if log will stabilize the variance.

plot.ts(log(x))

## We check square root transformation to see if it is better.

plot.ts(sqrt(x)) # not so good

plot.ts(xˆ(3/4))

# best transformation is log.

y=log(x)

### We check the ACF to see if differencing is needed

acf(y, lag=50, main="Long memory. Needs differencing.

Autocorrelations \n are significant up to 42 months past")

# Try different differencing operations

par(mfrow=c(3,1)) # will put in one graph to compare

y.regdiff=diff(y, lag=1, diff=1); acf(y.regdiff, lag=50) # could be

y.seasdiff=diff(y, lag=12, diff=1); acf(y.seasdiff, lag=50)

y.seas.reg=diff(y.regdiff, lag=12, diff=1); acf(y.seas.reg, lag=50)

# It appears that seasonal difference of the regular difference is the best.

Based on what we see after we run the R code, if xt = AirPassengers, then we must take log to stabilize the
variance, obtaining y=log(x).

To make y stationary, we first take regular difference, and then we do seasonal differencing to obtain y∗t . Since
AirPassengers is a monthly time series, the expression in terms of Equation 4.1 is

y∗ = ▽1
12 ▽ yt = (1 − B12)(1 − B)yt.

□

4.5. Problems

Problem 4.1
Column 4: ▽y∗t = (1 − B)yt = (14.4064 − 15, 14.9383 − 14.4064, 16.0374 − 14.9383, 15.6320 − 16.0374, 14.3975 −
15.6320)

Column 5: y∗∗t = ▽
2yt = ▽y∗t= (1−B)2yt = (0.5319+0.5936, 1.0991−0.5319,−0.4054−1.0991,−1.2345+0.4054)

Column 7: y∗∗∗t = (14.9383 − 15, 16.0374 − 14.4064, 15.6320 − 14.9383, 14.3975 − 16.0374)

The following R program will give all the columns of the table. Just need to pay attention to respect the lag and
put the numbers in the right row, as in the table.
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Completed Table 4.2

Time yt yt−1 = Byt y∗t = ▽yt y∗∗t = ▽
2yt = ▽y∗t yt−2 = B2yt y∗∗∗t = yt − yt−2 = ▽2yt

2001 15
2002 14.4064 15 −0.5936
2003 14.9383 14.4064 0.5319 1.1255 15 −0.0617
2004 16.0374 14.9383 1.0991 0.5672 14.4064 1.631
2005 15.6320 16.0374 −0.4054 −1.5045 14.9383 0.6937
2006 14.3975 15.6320 −1.2345 −0.8291 16.0374 −1.6399

y.t=ts(c(15, 14.4064, 14.9383,16.0374, 15.6320,14.3975), start=c(2001),freq=1)

y.t

# column 3 in the Table

By.t = lag(y.t,k=-1) # lag function-be careful.

By.t

By.t.4.table=window(By.t, end=c(2006))

By.t.4.table

# Column 4

diff.1= diff(y.t,lag=1,differences=1)

diff.1

## Column 5

diff.2=diff(y.t, lag=1, differences=2)

diff.2

## Column 6

B2y.t=lag(y.t,k=-2)

B2y.t

B2y.t.4.table=window(B2y.t, end=c(2006))

B2y.t.4.table

## Column 7

diff.3=diff(y.t, lag=2, differences=1)

diff.3

□

Problem 4.2
Yt = α1Yt−1 + α2Yt−2 +Wt − βWt−2
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Completed table 4.3

DATE HOUSTNSA
(yt)

yt−12 ▽12yt

1959-01-01 96.2
1959-02-01 99.0
1959-03-01 127.7
1959-04-01 150.8
1959-05-01 152.5
1959-06-01 147.8
1959-07-01 148.1
1959-08-01 138.2
1959-09-01 136.4
1959-10-01 120.0
1959-11-01 104.7
1959-12-01 95.6
1960-01-01 86.0 96.2 −10.2
1960-02-01 90.7 99.0 −8.3
1960-03-01 90.5 127.7 −37.2
1960-04-01 123.0 150.8 −27.8
1960-05-01 130.2 152.5 −22.3
1960-06-01 122.8 147.8 −25
1960-07-01 114.3 148.1 −33.8
1960-08-01 130.3 138.2 −7.9

□

Problem 4.3
HOUSTNSA is an interesting data set. We can see in the time plot (after you run the code given next) that there is a
change in patterns of the time series. Whereas before 1985 there is cyclical behavior, business cycles, after 1985 the
recurrent cycles disappear. We only observe a large drop in 2010. We observe seasonality all across the time interval
considered. This observation is more obviously seen when we seasonally differenced.

After seasonally differencing, the business cycles before 1985 are still there.

Since there are those business cycles before 1985, we difference the data as well.

(a) The results can be seen in Completed Table 4.3. ▽12yt = yt − yt−12. Subtract nonempty rows of column 4 from
column 3.

(b) Updated code supporting our conclusions follows:

houstnsa=read.csv("HOUSTNSA.csv",header=T)

houstnsa[1:20,]

y=ts(houstnsa[,2],start=c(1959,1),

end=c(2019, 11),frequency=12)

## plot of the time series and differenced

par(mfrow=c(3,1))

plot.ts(y, main="Raw time series (ts) shows change

in pattern around 1990")
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y.1star=diff(y,lag=12,differences=1) # seasonal diff of ts

plot.ts(y.1star, main="Seasonally

differenced ts preserves cycles before 1990")

# conclude that perhaps regular difference makes sense

y.1stardiff=diff(y.1star,lag=1,diff=1) #reg diff of seasonal diff of ts

plot.ts(y.1stardiff, main="Reg diff of seasonal diff confirms

changing variability")

HOUSTNSA is an interesting data set. We can see in the time plot (after you run the code given next) that there is
a change in patterns of the time series. Whereas before 1990 there is cyclical behavior, business cycles, after 1985
the recurrent cycles disappear. We only observe a large drop in 2010. We observe seasonality all across the time
interval considered. This observation is more obviously seen when we seasonally differenced.

After seasonally differencing, the business cycles before 1990 are still there.

Since there are those business cycles before 1985, we difference the data as well.

(c) After seeing the regular difference of the seasonal difference of the time series, we notice that there is more
variability before 1990. So we take the log. The stand alone program to do that is given next.

houstnsa=read.csv("HOUSTNSA.csv",header=T)

houstnsa[1:20,]

y=ts(houstnsa[,2],start=c(1959,1),

end=c(2019, 11),frequency=12)

y.log=log(y); class(y.log)

## plot of the logged time series and differenced

par(mfrow=c(3,1))

plot.ts(y.log, main="Raw logged time series shows change

in pattern around 1990")

y.1star=diff(y.log,lag=12,differences=1) # seas diff of log ts

plot.ts(y.1star, main="Seasonally

differenced logged ts preserves cycles before 1990")

# conclude that perhaps regular difference makes sense

y.1stardiff=diff(y.1star,lag=1,diff=1) #reg diff of seasonal diff of log ts

plot.ts(y.1stardiff, main="Reg diff of seasonal diff of log ts \n confirms changing variability")

# this code below is for the next question

dev.off() # type this before doing the next line.

### The remaining code is for the next two questions.

## part (d)

par(mfrow=c(2,1)) # will compare acf after diff of log and acf

# of mult decomp of raw.

## WE do first the acf of the random term obtained after differencing

acf(y.1stardiff, main="ACF of the differenced data, lag=50)

## part (e)

## we now do the acf of the random term of multiplicative decomposition

plot(decompose(y, type="mult"))

random=decompose(y, type="mult")$random

acf(random, main="ACF of random term of mult decomposition",

na.action=na.exclude, lag=50)
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We notice in the plots of the regular difference of the seasonal difference of the logged time series that the vari-
ability has become more about the same across the whole time interval considered, albeit with a burst of volatility
in 1980. We conclude that the logged data has similar variability across the time interval.

(d) We do the correlogram of the regular difference of the seasonal difference of the logged time series. The time
series after differencing is the random term. We notice that the ACF reveals that the random term is stationary.

See code posted in the question below this one.

(e) For comparison, we also do multiplicative decomposition of the time series and look at the random component
of the decomposition and look at the acf of the random term of the multiplicative decomposition, comparing
both. Notice that we do multiplicative decomposition of the raw (without log) time series, because by doing
multiplicative decomposition we are implying that there is changing variability, and hopefully the multiplicative
decomposition will account for that. The random term of the multiplicative decomposition looks different than
the one after differencing. It seems that differencing has stabilized the variable more than the multiplicative
decomposition.

In addition to that, we notice that the ACF of the random term of the multiplicative decomposition indicates some
nonstationarity in the data still.

The reader is recommended to try the following and compare. Do the additive decomposition of the logged data
and compare with the two acf that we already obtained. Draw conclusions.

□

4.6 Quiz

Question 4.1
∇3yt = (1 + 3B2 − 3B − B3)yt

□

Question 4.3
Yes, because the ACF of the ddAP shows that ddAP is stationary. (It does not show significant autocorrelations up to
very large k) We obtain the acf as follows, after entering the above code in R and executing it.

acf(ddAP, lag=50, cognellcogcmain="ACF of seasonal difference of regular \n

difference of AirPassengers reveals stationary")

However, notice that although the ACF shows that the ddAP is stationary, we observe in a time plot that the ddAP
time series has much more variability at the end of the time series, which suggests that we should have logged the time
series to make it variance stationary (logged or some other transformation). The time plot can be seen as follows:

plot.ts(ddAP, main="Time plot of seasonal difference of regular difference \n

of AirPassengers reveals variance nonstationarity")

□
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Question 4.5
None of the above. Although it appears as if the first difference was done, it is not done with the yt and it is not done
as (1 − B)yt = yt − yt−1.

□

Question 4.7
The new time series is

(1 − B2)2yt

□

Question 4.9
data=scan("viscosity.txt")

head(data)

y=ts(data)

acf(y, lag=50, main="ACF of viscosity reveals stationarity")

No, because the ACF shows that the time series is stationary in mean (which is equivalent to saying that it has
constant mean across time). There are significant autocorrelations only at lags k=1 and k=3, and the autocorrelations
die down quickly.

Notice that if we do not use the argument freq= in the ts() function, the lags in the horizontal axis of the ACF
indicate exactly lag=1, 2, ...etc. If we had put used that argument, the lag=1 would have indicated the first cycle, and
within that cycla we would have several lags not labeled. See the difference with the acf in Question 4.10.

□
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